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Week 11: Monday, Apr 9

Maximizing an interpolating quadratic

Suppose that a function f is evaluated on a reasonably fine, uniform mesh
{xi}ni=0 with spacing h = xi+1−xi. How can we find any local maxima inside
the mesh interval (x0, xn)?

A natural first approximation is to simply find local maxima in the dis-
crete sequence {f(xi)}ni=0. I would usually do that by looking for a place
where differences between adjacent points change from positive to negative
(the discrete analog of looking for a critical point where the derivative changes
from positive to negative):

% [idx] = find local max( fi )
%
% Based on samples fi of a function on a uniform mesh over
% an interval, find the indices of mesh points where there
% are discrete local maxima.

function [idx] = find local max(fi )

d fi = fi (2:end)−fi(1:end−1);
idx = find( d fi :end−1) > 0 & d fi(2:end) <= 0 );
idx = idx+1;

Unfortunately, unless we use a rather fine mesh, this method is unlikely to
give us more than a couple digits of accuracy. A simple method of improving
the accuracy of the result is to fit a polynomial interpolant to the data
near the discrete local maximum, and use a maximum of the interpolating
polynomial as an estimate for the local maximum of f . The simplest variant
of this is to fit a quadratic; let’s look in a little detail at how this works.

Suppose xj is an interior mesh point where f has a discrete local max-
imum. We would like to find a corrected estimate of the local maximum,
x∗ = xj + z, by maximizing a quadratic interpolant through xj−1, xj, and
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xj+1. In terms of the correction z, the interpolation conditions are

p(0) = f(xj + 0) = f(xj)

p(h) = f(xj + h) = f(xj+1)

p(−h) = f(xj − h) = f(xj−1)

In a homework exercise, we saw how to differentiate a polynomial interpolant
written in the Newton basis. For variety, let’s now write things in terms of
the Lagrange polynomials for {0, h,−h}:

p(z) =
p(0)

h2
(h2 − z2) +

p(h)

2h2
z(z + h) +

p(−h)

2h2
z(z − h)

= p(0) +

(
p(h)− p(−h)

2h

)
z +

1

2

(
p(h)− 2p(0) + p(−h)

h2

)
z2.

Note that this last expression is just p(z) expressed in Taylor series form:

p(z) = p(0) + p′(0)z +
1

2
p′′(0)z2.

where

p′(0) = p[h,−h] =
p(h)− p(−h)

2h
,

p′′(0) = 2p[h, 0,−h] =
p(h)− 2p(0) + p(−h)

h2
.

Therefore, the maximum z∗ for p satisfies

z∗ = − p′(0)

p′′(0)
, p(z∗) = p(0)− p′(0)2

2p′′(0)
.

It’s worth comparing this maximization to what we would do if we took
xj as an initial guess at the maximum and did one step of Newton iteration
to improve our guess:

xnew = xj −
f ′(xj)

f ′′(xj)

The correction z∗ looks just like what we would compute in one Newton step,
but with the approximations f ′(xj) ≈ p′(0) and f ′′(xj) ≈ p′′(0)!
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Two ways to numerical differentiation

One way to approximate derivatives is by interpolation. If we can use inter-
polation to estimate function values, why not use it to estimate derivatives
as well? The basic procedure here is:

• Interpolate f at some nodes x0, . . . , xn.

• Differentiate the interpolating polynomial in order to approximate deriva-
tives of f . Usually, one is interested in the derivative at one of the node
points.

In general, if the interpolation points x0, . . . , xn all lie within an interval of
length h, and if f has enough continuous derivatives in that interval, we have

p(k)(xj) = O(hn+1−k).

The error analysis is relatively straightforward, and is in the book; but I did
not drag you through the algebra in class, and do not intend to do so here.

This, therefore, is one way of thinking about numerical differentiation.
Another way to get to the same end is to manipulate Taylor series. For
example, in the previous section we derived the centered difference approxi-
mations by differentiating a quadratic interpolant:

f ′(x) ≈ f(x + h)− f(x− h)

2h
, f ′′(x) ≈ f(x + h)− 2f(0) + f(x− h)

h2
.

We could have also said “we have f(x), f(x + h), and f(x− h); what linear
combination of these values best approximates f ′(x) (or f ′′(x))?” That is,
we somehow want to choose coefficients a+, a0, a− so that we get a good
approximation of f ′(x) of the form

f ′(x) ≈ f̂ ′(x) ≡ a0f(x) + a+f(x + h) + a−f(x− h).

Note that we can Taylor expand the terms in f̂ ′(x) about x to get

f̂ ′(x) = (a0 + a+ + a−)f(x)

+ h(a+ − a−)f ′(x)

+
h2

2
(a+ + a−)f ′′(x)

+
h3

6
(a+ − a−)f ′′′(x)

+ O(h4)
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We can adjust the three coefficients to match the first three terms in this
series with the the (trivial) Taylor series for f ′(x) by solving the linear system

(a0 + a+ + a−) = 0

h(a+ − a−) = 1

h2

2
(a+ + a−) = 0.

This gives us

a0 = 0, a± = ± 1

2h
or

f̂ ′(x) =
f(x + h)− f(x− h)

2h
= f ′(x) + O(h2)

Let’s walk through the same exercise for computing the second derivative.
We want a formula of the form

f̂ ′′(x) = b0f(x) + b+f(x + h) + b−f(x− h),

and Taylor expanding each term in the right hand side about zero gives

f̂ ′(x) = (b0 + b+ + b−)f(x)

+ h(b+ − b−)f ′(x)

+
h2

2
(b+ + b−)f ′′(x)

+
h3

6
(b+ − b−)f ′′′(x)

+ O(h4)

Setting the first three terms in this series to match f ′′(x), we get the equations

(b0 + b+ + b−) = 0

h(b+ − b−) = 0

h2

2
(b+ + b−) = 1,

which has the solution

b0 = − 2

h2
, b± =

1

h2
.
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Notice that because b+ − b−, we also automatically get that

h3

6
(b+ − b−)f ′′(x) = 0,

and so
f̂ ′′(x)− f ′′(x) = O(h2),

which is one better order of accuracy than we might have expected from
looking too uncautiously at the bound based on the derivation via polynomial
interpolation.


