Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

Week 9: Wednesday, Mar 28

Summary of last time

We spent most of the last lecture discussing three forms of polynomial inter-
polation. In each case, we were given function values {y;}%_, at points {z;}¢ |,
and we wanted to construct a degree d polynomial such that p(z;) = y;. We
do this in general by writing

d
)= cjo;(x),

J=0

where the functions ¢;(z) form a basis for the space of polynomials of de-
gree at most d. Then we use the interpolation conditions to determine the
coefficients c; via a linear system

Ac =y,

where A;; = ¢;(z;). In the last lecture, we considered three choices of basis
functions ¢;(x):

1. Power basis:

pi(r) = 7.

2. Lagrange basis:
Hi;éj (z — ;)

#ile) = Hi;éj(xj — ;)

3. Newton basis:

¢;(z) = [(& — 2.

1<j

The power basis yields an ill-conditioned system matrix (the Vandermonde
matrix). The Lagrange basis leads to a trivial linear system, but it takes O(d)
time to evaluate each Lagrange polynomial and so O(d?) time to evluate the
interpolant. The Newton basis is a nice compromise: the coefficients can
be computed in O(d?) time as the solution to an upper triangular system
or through a divided difference recurrence, and the polynomial itself can be
evaluated in O(d) time using an algorithm like Horner’s rule.

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

Divided differences and derivatives

The coefficients in the Newton form of the interpolant are divided differences.
For a given function f known at sample points {x;}!',, we can evaluate
divided differences recursively:

flzs] = f(xs),
f[xi,ﬁﬁiﬂ, i 7333‘71] - f[xi+17 e ,l’j]
ZT; —.CE]' ’

f[xi>$i+1, e 7I’J] —

This recurrence is numerically preferable to finding the coefficients of the
Newton interpolant by back substitution.

You might recognize the first divided difference f[z,xs] as a derivative
approximation. In fact, if f is a differentiable function, then the mean value
theorem tells us that f[z1,xs] = f/(§) for some & between x; and z5. Thus
if f is a continuously differentiable function, it makes sense to define

fles, x] = f(x).

This gives us a natural way to solve Hermite interpolation problems in which
we specify both function values and derivatives at specified points.
More generally, it turns out that if f € C™!, then

FmU()

TR some ¢ € (min{z; }, max{z;})

f[l'l, To, ... ,.Z'm] =
Therefore, in the limiting case as we let all the z; approach some common
point zg, the Newton form of the interpolant degenerates into a Taylor ap-
proximation.

Error in polynomial approximation

The relation between divided differences and derivatives is incredibly useful in
reasoning about how well polynomial interpolants approximate an underlying
function. Suppose we approximate f € C™ by a polynomial p of degree
n — 1 that interpolates f at points {z;}! ;. At any point z, we can write
f(z) = p*(x), where p*(x) is the degree n polynomial interpolating f at

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

{z;}"_; U {z}. This may seem somewhat silly, but it gives us the error
representation

(x — xy).

IO

n!

(]

If 2 lies within & of all the values x; and |f™| < M, on the interval bounded
by the points in question, then we have

M, h"
n!

[f(z) —p(2)] <

This bound suggests that high-order polynomial interpolation of a smooth
function over a bounded interval can provide very accurate approximations
to the function values, with two catches. First, the h" term may not be
small (especially in extrapolation, where z lies outside the convex hull of the
data points). Second, M, may grow quickly as a function of n. Note that
these two effects are not independent; for example, we can scale the nodal
coordinates to make A smaller, but then M, gets commensurately bigger.
The standard example of these effects, due to Runge, is the function

1

o) = o

Polynomial approximations to ¢(¢) by interpolation on a uniform mesh on
[—1,1] oscillate wildly toward the end points of the interval, and it is not
true in this case that ever higher-degree interpolating polynomials provide
ever-better function approximations. This is a general problem, known as
the Runge phenomena, and there are two standard fixes. The first fix is to
use something other than polynomials (piecewise polynomial functions are
particularly popular). We will talk about this option next week. The second
approach involves optimizing the location of the sample points, a topic which
we will turn to now.

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

Chebyshev interpolation

Suppose we want a polynomial interpolant that accurately represents some
function on a bounded interval. Earlier, we showed that

n

M) (9) =
1@ = o) = L@ - w0,
Toi=l
If | f™(z)] < M on the interval [a, b], then

@) = p@)] < 2 -).

n!
i=1

So one natural approach to trying to build accurate interpolants is to try to
minimize some norm that measures the size of

n

b(a) = [-)

=1

over the interval [a, b]. If we care about the values pointwise, it makes sense
to try to choose the interpolation points to minimize

%] oo ((a.)) = max ()]

This leads to the choice of Chebyshev points on [—1,1]

2i — 1
&:cos(Z2 7T>, 1=1,...,n.
n

For more general intervals, we can simply apply an affine mapping to get the
interpolation points

b;a(fi+ 1).

If we choose the Chebyshev points as interpolation nodes, then

/| Lo (fap)y = 27"

and so we have the error bound

T;=a-+

for z € [a, b].

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

Problems to ponder

1. Suppose p(z) = ag + a1z + axx? + azx®. Write a linear system for the
coefficients a; such that p(0) = po, p'(0) = qo, p(1) = p1, P'(1) = ¢1.

2. For the points 1 = —1,25, = 0,23 = 1 and the values of y; = 0,y =
1,y3 = 1, write the interpolating polynomial in power form, Lagrange
form, and Newton form.

3. In lecture, I described Horner’s rule for evaluating a polynomial

d
plx) =) a
=0
in terms of the recurrence
Pd+1(l’) =0
pi(x) = zpja(z) + ¢

What is the equivalent recurrence for evaluating the Newton form of
the interpolant?

4. Describe how to find coefficients ¢; such that
g(x) = ¢1 + cow + cgsin(x) + ¢4 cos(x)
interpolates f(x) at distinct points xy, za, 3, 4.

5. In class, we wrote the Lagrange interpolant as
p(x) =Y ili(w)
j=1"

where L;(x) = [];.;(z — x%). The book describes computation of the
Lagrange interpolant via the barycentric formula

> jmin WY/ (2 —)
> jin Wi/ (T —)

where w; ' = TJ, 2j(r; — ;). Why are these formulas equivalent, and
what is the advantage of barycentric interpolation?

p(x) =

