Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

Week 9: Monday, Mar 26

Function approximation

A common task in scientific computing is to approximate a function. The
approximated function might be available only through tabulated data, or it
may be the output of some other numerical procedure, or it may be the solu-
tion to a differential equation. The approximating function is usually chosen
because it is relatively simpler to evaluate and analyze. Depending on the
context, we might want an approximation that is accurate for a narrow range
of arguments (like a Taylor series), or we might want guaranteed global accu-
racy over a wide range of arguments. We might want an approximation that
preserves properties like monotonicity or positivity (e.g. when approximat-
ing a probability density). We might want to exactly match measurements
at specified points, or we might want an approximation that “smooths out”
noisy data. We might care a great deal about the cost of forming the approx-
imating function if it is only used a few times, or we might care more about
the cost of evaluating the approximation after it has been formed. There are
a huge number of possible tradeoffs, and it is worth keeping these types of
questions in mind in practice.

Though function approximation is a huge subject, we will mostly focus on
approximation by polynomials and piecewise polynomials. In particular, we
will concentrate on interpolation, or finding (piecewise) polynomial approxi-
mating functions that exactly match a given function at specified points.

Polynomial interpolation

This is the basic polynomial interpolation problem: given data {(x;,y;)},
where all the ¢; are distinct, find a degree d polynomial p(z) such that p(z;) =
y; for each 7. Such a polynomial always exists and is unique.

The Vandermonde approach

Maybe the most obvious way to approach to this problem is to write

pla) = cjal,

J=0

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

where the unknown z; are determined by the interpolation conditions

d

pla:) =Y cal =y,

j=0
In matrix form, we can write the interpolation conditions as
Ac=y

where a;; = xf (and we're now thinking of the index j as going from zero
to d). The matrix A is a Vandermonde matriz. The Vandermonde matrix is
nonsingular, and we can solve Vandermonde systems using ordinary Gaussian
elimination in O(d?) time.

This is usually a bad way to compute things numerically. The problem is
that the condition numbers of Vandermonde systems grow exponentially with
the system size, yielding terribly ill-conditioned problems even for relatively
small problems.

The Lagrange approach

The problem with the Vandermonde matrix is not in the basic setup, but in
how we chose to represent the space of degree d polynomials. In general, we
can write

p(r) = ch%(l")

where {g;(x)} is some other basis for the space of polynomials of degree at
most d. The power basis {2/} just happens to be a poor choice from the
perspective of conditioning.

One alternative to the power basis is a basis of Lagrange polynomials:

Hj;éz’(x — ;)
H#i(Ij — ;)

The polynomial L; is characterized by the property

1, j=1
Li ;) = 7
(3) {0, otherwise.

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

Therefore, if we write the interpolating polynomial in the form

p(x) = ZCij<x)7

the interpolation conditions yield the linear system
Ic =y,

i.e. we simply have
d
ple) =Y y;L(),
=0

It is trivial to find the coefficients in a representation of an interpolant via
Lagrange polynomials. But what if we want to evaluate the Lagrange form
of the interpolant at some point? The most obvious algorithm costs O(d?)
per evaluation, which is more expensive than the O(d) cost of evaluating a
polynomial in the usual monomial basis using Horner’s rule.

Horner’s rule

There are typically two tasks in applications of polynomial interpolation.
The first task is getting some representation of the polynomial; the second
task is to actually evaluate the polynomial. In the case of the power ba-
sis {#7}9_,, we would usually evaluate the polynomial in O(d) time using
Horner’s method. You have likely seen this method before, but it is perhaps
worth going through it one more time.

Horner’s scheme can be written in terms of a recurrence, writing p(z) as
po(x) where

pi(z) = ¢j + apj(z)

and py(z) = c¢q. For example, if we had three data points, we would write

pQ(l’) = C2
p1(z) = 1 + xpe(x) = 1 + weo

po(x) = co + xpi(x) = o + w1 + 2co.

Usually, we would just write a loop:

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

function px = peval(c,x)
px = c(end)*x;
for j = length(c)—1:—1:1
px = c(j) + X*px;
end

But even if we would usually write the loop with no particular thought to
the recurrence, it is worth remembering how to write the recurrence.

The idea of Horner’s rule extends to other bases. For example, suppose
we now write a quadratic as

p(x) = coqo(x) + c1q1 () + c2q2(2).

An alternate way to write this is

() = qo(co + q1/q0(c1 + c2q2/q1));

more generally, we could write p(x) = qo(z)po(z) where py(x) = ¢4 and

pi(z) = ¢j + pit1(x)gi1(x)/q;(x).

In the case of the monomial basis, this is just Horner’s rule, but the recurrence
holds more generally.

The Newton approach

The Vandermonde approach to interpolation requires that we solve an ill-
conditioned linear system (at a cost of O(d?)) to find the interpolating poly-
nomial. It then costs O(d) per point to evaluate the polynomial. The La-
grange approach gives us a trivial linear system for the coefficients, but it
then costs O(d?) per point to evaluate the resulting representation. Newton’s
form of the interpolant will give us a better balance: O(d?) time to find the
coefficients, O(d) time to evaluate the function.
Newton’s interpolation scheme uses the polynomial basis

qGo(z) =1

gi(z) = [[(= =), >0

k=1

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

If we write

d
plx) =Y (),
7=0
the interpolating conditions have the form

Uc=y,

where U is an upper triangular matrix with entries

d

ui; = qj(x;) = H(tz — ;)
k=j
for v = 0,...d and 5 = 0,...,d. Because U is upper triangular, we can

compute the coefficients ¢; in O(d?) time; and we can use the relationship
¢;j(z) = (z —2;)gj—1(x) as the basis for a Horner-like scheme to evaluate p(x)
in O(d) time (this is part of a problem on HW 5).

In practice, we typically do not form the matrix U in order to compute
x. Instead, we express the components of x in terms of divided differences.
That is, we write

G = y[xh s 7xj+1]
where the coefficients y[z;, . .., z;] are defined recursively by the relationship
ylzd] = v,
LiyLit1y-e-yLj_1| — Y| Tj4r1y--.,T5
y['r’bxi-i-l,-. ,,’,Uj] — y[+1 J 1] [+1]]'

Evaluating the x; coefficients by divided differences turns out to be numeri-
cally preferable to forming U and solving by back-substitution.

