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Week 7: Wednesday, Mar 14

Line search revisited

In the last lecture, we briefly discussed the idea of a line search to improve
the convergence of Newton iterations. That is, instead of always using the
Newton update

xk+1 = xk − f ′(xk)−1f(xk),

we allow ourselves to use a scaled version of the step

xk+1 = xk − αkf
′(xk)−1f(xk),

where αk is chosen to ensure that the iteration actually makes progress. Here,
“progress” is typically measured in terms of the residual norm ‖f(xk+1)‖. At
the bare minimum, we want to make sure that the residual goes down at
each step, but we can prove a bit more with a slightly stricter criterion:

‖f(xk+1)‖ < (1− σαk)‖f(xk)‖

where σ is chosen to be some small value (say 10−4). In practice, this looks
something like this:

% Get Newton step
[ f ,J] = eval f(x);
d = J\f;

% Line search
alpha = 1;
for k = 1:maxstep

% Try step
xnew = x−alpha∗d;
fnew = eval f(xnew);

% Accept if satisfactoy
if norm(fnew) < (1−sigma∗alpha)∗norm(f)

x = xnew;
f = fnew;



Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

break;
end

% Otherwise, cut alpha in half and try again
alpha = alpha/2;

end

This line search strategy essentially relies on the fact that we can charac-
terize a solution of f(x) = 0 in terms of a minimization of ‖f(x)‖. Of course,
this relationship goes the other way, too: for a differentiable objective func-
tion, we can write a nonlinear system of equations that define necessary
condtions for a minimum.

Iterations for optimization

Suppose g : Rn → R is twice continuously differentiable near x0. Then you
might remember that Taylor’s theorem gives

g(x+ z) = g(x) + g′(x)z +
1

2
zTHg(x)z +O(‖z‖3),

where Hg is the Hessian matrix

[Hg(x)]ij =
∂2g(x)

xixj
.

A necessary conditions for x∗ to be a local minimum or maximum of g is
that g′(x) = 0. This suggests one way of trying to find a local minimum of
g is simply Newton iteration (with a line search):

xk+1 = xk − αkHg(x
k)−1∇g(xk).

Unfortunately, even if Newton iteration converges to a critical point (a
point where the gradient of g is zero), there is nothing to guarantee that this
will be a minimum rather than a maximum. In order to make sure that we
converge to a minimum, we would like to make sure not that ‖∇g‖ decreases
at each step, but that g decreases at each step! There are two ensuring this
decrease:
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1. We need the Newton direction (or some other search direction) to at
least be a descent direction. That is, we want

xk+1 = xk + αkd
k

where ∇g(xk) · dk < 0.

2. Once we have a descent direction, we want to make sure that the steps
we take are short enough that we actually decrease g by some sufficient
amount. The condition we use might look something like

g(xk+1) ≤ g(xk) + αkσ∇g(xk) · dk

Under what conditions can we guarantee that the Newton direction is
actually a descent direction? If the Newton direction is

dk = −Hg(x
k)−1∇g(xk),

then the descent condition looks like

∇g(xk)Tdk = −∇g(xk)THg(x
k)−1∇g(xk),

which is a quadratic form in Hg(x
k)−1. So a sufficient condition for the

Newton iteration to be a descent direction is that Hg(x
k) is positive definite

(and therefore that Hg(x
k)−1 is positive definite). This suggests the following

modification to the Newton approach to minimizing g:

• If the Hessian matrix Hg(x
k) is positive definite, search in the Newton

direction
dk = −Hg(x

k)−1∇g(xk).

• If the Hessian is not positive definite at xk, use a modified Newton
direction

dk = −Ĥ−1∇g(xk).

where Ĥ is some positive definite matrix. Convergence tends to be
fastest when Ĥ approximates the Hessian in some way (subject to the
constraint of being positive definite), but one can also be lazy and just
choose Ĥ = I (i.e. follow the direction of steepest descent).

Note that while it is possible to choose to a local minimum by choosing the
steepest descent direction −∇g(xk) at every step, this approach can yield
painfully slow convergence.
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Problems to Ponder

1. Write a (guarded) Newton iteration to find the intersection of three
spheres in three dimensional space, i.e. find x∗ such that

‖x∗ − xa‖ = ra

‖x∗ − xb‖ = rb

‖x∗ − xc‖ = rc

Assume for the moment that there are exactly two solutions. If you
find one, how might you easily find the other?

2. Consider the steepest descent iteration

xk+1 = xk − αk∇φ(xk)

applied to

φ(x) =
1

2

[
x1
xt

]T [
1 0
0 106

] [
x1
xt

]
,

and suppose that αk is chosen by exact line search: that is αk is chosen

to reduce φ(xk+1) as much as possible. Starting from
[
1 1

]T
, what are

the iterates produced by this iteration? What can you say about the
rate of convergence?

3. What is ∇xφ(x) for φ(x) = ‖f(x)‖2? Argue based on your computa-
tion that the Newton direction is a descent direction for this objective
function.

4. Write the critical point equations for minimizing ‖f(x)− b‖2.

5. The Gauss-Newton iteration for minimizing ‖f(x)− b‖2 is

pk =
(
J(xk)TJ(xk)

)−1
J(xk)T (f(xk)− b)

xk+1 = xk − αkpk

where J(xk) is the Jacobian of f . Argue that pk is always a descent
direction.


