Week 7: Wednesday, Mar 14

Line search revisited

In the last lecture, we briefly discussed the idea of a *line search* to improve the convergence of Newton iterations. That is, instead of always using the Newton update

$$x^{k+1} = x^k - f'(x^k)^{-1} f(x^k),$$

we allow ourselves to use a scaled version of the step

$$x^{k+1} = x^k - \alpha_k f'(x^k)^{-1} f(x^k),$$

where α_k is chosen to ensure that the iteration actually makes progress. Here, "progress" is typically measured in terms of the residual norm $||f(x^{k+1})||$. At the bare minimum, we want to make sure that the residual goes down at each step, but we can prove a bit more with a slightly stricter criterion:

$$||f(x^{k+1})|| < (1 - \sigma \alpha_k) ||f(x^k)||$$

where σ is chosen to be some small value (say 10^{-4}). In practice, this looks something like this:

```
% Get Newton step
[f,J] = eval_f(x);
d = J\f;

% Line search
alpha = 1;
for k = 1:maxstep

% Try step
    xnew = x-alpha*d;
    fnew = eval_f(xnew);

% Accept if satisfactoy
    if norm(fnew) < (1-sigma*alpha)*norm(f)
        x = xnew;
        f = fnew;</pre>
```

break;

end

% Otherwise, cut alpha in half and try again alpha = alpha/2;

end

This line search strategy essentially relies on the fact that we can characterize a solution of f(x) = 0 in terms of a minimization of ||f(x)||. Of course, this relationship goes the other way, too: for a differentiable objective function, we can write a nonlinear system of equations that define necessary condtions for a minimum.

Iterations for optimization

Suppose $g: \mathbb{R}^n \to \mathbb{R}$ is twice continuously differentiable near x_0 . Then you might remember that Taylor's theorem gives

$$g(x+z) = g(x) + g'(x)z + \frac{1}{2}z^{T}H_{g}(x)z + O(||z||^{3}),$$

where H_g is the Hessian matrix

$$[H_g(x)]_{ij} = \frac{\partial^2 g(x)}{x_i x_j}.$$

A necessary conditions for x_* to be a local minimum or maximum of g is that g'(x) = 0. This suggests one way of trying to find a local minimum of g is simply Newton iteration (with a line search):

$$x^{k+1} = x^k - \alpha_k H_q(x^k)^{-1} \nabla g(x^k).$$

Unfortunately, even if Newton iteration converges to a critical point (a point where the gradient of g is zero), there is nothing to guarantee that this will be a minimum rather than a maximum. In order to make sure that we converge to a minimum, we would like to make sure not that $\|\nabla g\|$ decreases at each step, but that g decreases at each step! There are two ensuring this decrease:

1. We need the Newton direction (or some other search direction) to at least be a *descent* direction. That is, we want

$$x^{k+1} = x^k + \alpha_k d^k$$

where $\nabla g(x^k) \cdot d^k < 0$.

2. Once we have a descent direction, we want to make sure that the steps we take are short enough that we actually decrease g by some sufficient amount. The condition we use might look something like

$$g(x^{k+1}) \le g(x^k) + \alpha^k \sigma \nabla g(x^k) \cdot d^k$$

Under what conditions can we guarantee that the Newton direction is actually a descent direction? If the Newton direction is

$$d^k = -H_g(x^k)^{-1} \nabla g(x^k),$$

then the descent condition looks like

$$\nabla g(x^k)^T d^k = -\nabla g(x^k)^T H_g(x^k)^{-1} \nabla g(x^k),$$

which is a quadratic form in $H_g(x^k)^{-1}$. So a sufficient condition for the Newton iteration to be a descent direction is that $H_g(x^k)$ is positive definite (and therefore that $H_g(x^k)^{-1}$ is positive definite). This suggests the following modification to the Newton approach to minimizing g:

• If the Hessian matrix $H_g(x^k)$ is positive definite, search in the Newton direction

$$d^k = -H_g(x^k)^{-1} \nabla g(x^k).$$

• If the Hessian is not positive definite at x^k , use a modified Newton direction

$$d^k = -\hat{H}^{-1} \nabla g(x^k).$$

where \hat{H} is some positive definite matrix. Convergence tends to be fastest when \hat{H} approximates the Hessian in some way (subject to the constraint of being positive definite), but one can also be lazy and just choose $\hat{H} = I$ (i.e. follow the direction of steepest descent).

Note that while it is possible to choose to a local minimum by choosing the steepest descent direction $-\nabla g(x^k)$ at every step, this approach can yield painfully slow convergence.

Problems to Ponder

1. Write a (guarded) Newton iteration to find the intersection of three spheres in three dimensional space, i.e. find x_* such that

$$||x_* - x_a|| = r_a$$

 $||x_* - x_b|| = r_b$
 $||x_* - x_c|| = r_c$

Assume for the moment that there are exactly two solutions. If you find one, how might you easily find the other?

2. Consider the steepest descent iteration

$$x_{k+1} = x_k - \alpha_k \nabla \phi(x_k)$$

applied to

$$\phi(x) = \frac{1}{2} \begin{bmatrix} x_1 \\ x_t \end{bmatrix}^T \begin{bmatrix} 1 & 0 \\ 0 & 10^6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_t \end{bmatrix},$$

and suppose that α_k is chosen by *exact line search*: that is α_k is chosen to reduce $\phi(x_{k+1})$ as much as possible. Starting from $\begin{bmatrix} 1 & 1 \end{bmatrix}^T$, what are the iterates produced by this iteration? What can you say about the rate of convergence?

- 3. What is $\nabla_x \phi(x)$ for $\phi(x) = ||f(x)||^2$? Argue based on your computation that the Newton direction is a descent direction for this objective function.
- 4. Write the critical point equations for minimizing $||f(x) b||^2$.
- 5. The Gauss-Newton iteration for minimizing $||f(x) b||^2$ is

$$p_k = (J(x_k)^T J(x_k))^{-1} J(x_k)^T (f(x_k) - b)$$
$$x^{k+1} = x^k - \alpha_k p_k$$

where $J(x_k)$ is the Jacobian of f. Argue that p_k is always a descent direction.