
Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

Week 6: Wednesday, Mar 7

From Stationary Methods to Krylov Subspaces

Last time, we discussed stationary methods for the iterative solution of linear
systems of equations, which can generally be written in the form

x(k+1) = x(k) −M−1(Ax(k) − b).

Stationary methods are simple, and they make good building blocks for more
sophisticated methods, but for most purposes they have been superceded by
faster-converging Krylov subspace methods. The book describes one of these,
the conjugate gradient method (CG), in a little detail. In these notes, we
will describe the same iteration, but from a slightly different perspective.

When all you have is a hammer...

Suppose that we want to solve Ax = b, but the only information we have
about A is a subroutine that can apply A to a vector. What should we do?
If the only operation at hand is matrix mutiplication, and the only vector
staring us in the face is b, a natural approach would be to take b and start
multiplying by A to get b, Ab, A2b, etc. Taking linear combinations of these
vectors gives us a Krylov subspace:

Kk(A, b) = span{b, Ab,A2b, . . . , Ak−1b}.

Given the examples that we’ve seen so far, you might reasonably wonder
why we’re assuming that we can do so little with A. In fact, there are many
cases where working with the entries of A is a pain, but evaluating a matrix-
vector product can be done efficiently. One set of examples comes from image
and signal processing, where many linear operations can be applied efficiently
using Fourier transforms. Another example, which we may encounter again
after the break when we talk about Newton methods for solving systems of
linear equations, is approximate multiplication by a Jacobian matrix using
finite differences. Since this example reinforces some calculus concepts that
have occurred repeatedly, let’s go through it in a little detail.

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

Suppose f : Rn → Rn has two continuous derivatives. At a point x, the
Jacobian matrix J(x) is a matrix of partial derivatives of f :

Jij =
∂fi
∂xj

(x).

The Jacobian matrix can be used to calculate directional derivatives using
the chain rule; if u is some direction, then

∂f

∂u
(x) =

d

dt

∣∣∣∣
t=0

f(x+ tu) = J(x)u.

In a calculus course, you might learn that multiplying the Jacobian matrix
by a direction vector is a way to compute a directional derivative. Here,
we take the opposite approach: to approximate the product of a Jacobian
matrix and a vector, we approximate a directional derivative:

J(x)u =
d

dt

∣∣∣∣
t=0

f(x+ tu) ≈ f(x+ hu)− f(x)

h
.

If f is a “black box” function that is hard to differentiate analytically, this
numerical approach to computing matrix-vector products with the Jacobian
is sometimes incredibly useful.

From Linear Systems to Optimization

There are two basic ingredients to Krylov subspace methods:

1. Build a sequence of Krylov subspaces.

2. Find approximate solutions in those subspaces.

The conjugate gradient method (CG) pulls out approximate solutions to
Ax = b when A is a symmetric positive definite matrix by turning the prob-
lem of linear system solving into an equivalent optimization problem. That
is, the functional

φ(x) =
1

2
xTAx− xT b,

has a single critical point at

0 = ∇φ(x) = Ax− b.

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

By the second derivative test, this critical point is a global minimum for φ.
The conjugate gradient method finds an approximate solution x(k) ∈ Kk(A, b)
by minimizing φ(x) over the Krylov subspace. In exact arithmetic, this is
guaranteed to converge to the true solution in at most n steps, but in practice
we usually get very good approximations in far fewer than n steps.

The what of the CG algorithm, then, is straightforward: at step k, the
method produces an approximate solution x(k) that minimizes φ(x) over the
kth Krylov subspace. The how of the algorithm involves a lot of beautiful
mathematical connections and a little bit of magic. I will not discuss the
implementation of CG further, except to point to the very popular article
by Jonathan Shewchuck on “The Conjugate Gradient Method without the
Agonizing Pain,” which provides a gentle introduction to the particulars1.

Preconditioning

For the fastest convergence, Krylov subspace methods like conjugate gradi-
ents should be used with a preconditioner. That is, instead of solving Ax = b,
we solve

M−1Ax = M−1b,

where applying M−1 should approximate A−1 in some very loose sense2 be
reasonably inexpensive. Thinking back to the last lecture, we recall that
M−1A also showed up when we were analyzing the stationary iteration

y(k+1) = y(k) −M−1(Ay(k) − b)

Note that if we start this iteration at y(0) = 0, then

y(k) ∈ Kk(M−1A,M−1b).

1I personally prefer the terser — more painful? — treatment in standard numerical
linear algebra texts like those of Demmel or Golub and Van Loan, or even just the “tem-
plate” given in the book Templates for the Solution of Linear Systems (which is freely
available online). Then again, I grew up to be a numerical analyst. Your mileage may
vary.

2Really, M−1 should be chosen so that the eigenvalues of M−1A are clustered, though
this characterization tends to be more useful for analysis than for preconditioner design.
I tried to walk through this in lecture, and realized about 3/4 of the way through my
explanation that I’d lost everybody by pulling in too much about eigenvalues too quickly.
Sorry about that. Don’t worry, it won’t be on any exams.

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

That is, the first k steps of a stationary iteration with the splitting ma-
trix M form a basis for a preconditioned Krylov subspace Kk(M−1A,M−1b).
Since Krylov subspace methods try to find the best possible solution within
a subspace (where the definition of “best” varies from method to method),
using M as a preconditioner for a Krylov subspace method typically yields
better approximations than using M as the basis for a stationary method.
However, the M matrices used in classical stationary methods such as the
Jacobi, Gauss-Seidel, and SOR iterations are frequently used as default pre-
conditioners. It is often possible to construct much better preconditioners for
specific classes of matrices using a combination of hard analysis and physical
intuition, but this is beyond the scope of what we will cover in this class.

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

Problems to ponder

1. A is strictly diagonally dominant if for each i,

aii >
∑
j 6=i

|aij|.

Show that Jacobi iteration necessarily converges for strictly diagonally
dominant matrices.

2. If A is a sparse rectangular matrix, MATLAB provides a so-called “Q-
less” QR decomposition in which R is a sparse matrix and Q = AR−1

is never formed explicitly. Suppose the computed factor R̂ is contami-
nated by a small amount of noise. Describe a stationary method that
nonetheless uses this computed factor to compute argminx ‖Ax − b‖2
accurately in a few steps3.

3. Show that if φ(x) = 1
2
xTAx− xT b and A is symmetric, then ∇φ(x) =

Ax− b.

4. Given a guess xold, consider the update xnew = xold + tei. For what
value of t is φ(xnew) minimized? For the one-dimensional Poisson model
problem, show that updating the ith component of x according to this
rule is equivalent to step i in a Gauss-Seidel sweep4

5. Suppose x∗ = argminx∈U φ(x). Show that Ax∗ − b is orthogonal to
every vector in U .

6. Show that 〈x∗ − A−1b, x∗〉A = 0 (use the previous question).

7. Show that minimizing φ(x∗) over all vectors in U also minimizes ‖x∗−
A−1b‖2A over all vectors in U .

3If you are following along offline, type help qr in MATLAB — the online documen-
tation describes exactly the iterative refinement strategy I have in mind.

4This is true for matrices other than the model problem, too; in general, Gauss-Seidel
for a symmetric positive definite system will monotonically reduce the value of φ.

