Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

Week 6: Monday, Mar 5

Iterative and Direct Methods

So far, we have discussed direct methods for solving linear systems and least
squares problems. These methods have several advantages:

e They are general purpose. It helps to recognize some basic structural
properties (sparsity, symmetry, etc), and you need to understand con-
ditioning. Otherwise, you can often trust that MATLAB’s backslash
operation is doing something reasonable.

e They are robust. More specifically, direct methods are generally back-
ward stable.

e There are good, fast standard libraries.

The main challenges of direct methods involve scaling. Forming and factoring
a large matrix can be expensive.

Iterative methods for solving linear systems have a lot of knobs to twiddle,
and they often have to be tailored for specific types of systems in order to
converge well. But when they are tailored, and when the parameters are set
right, they can be very efficient.

A Model Problem

There is a standard model problem for introducing iterative methods for
linear systems: a discretized Poisson equation. In lecture, I talked about the
two-dimensional case (which is the same case that is in the book); but in
order to present the ideas in a simple way, let me write in these notes about
the 1D case.

In order to set up this model problem, we need the following approxima-
tion: if u(z) is twice differentiable, then

w(x — h) — 2u(z) + u(x + h)

u'(z) = 2 +O(h?).

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

We can use this finite difference approximation to solve differential equations.
For example, suppose we want to approximate the solution to

—u"(z) = f(z) for 0 <z <1
u(0) = u(l) = 0.
The standard approach would be to sample the interval [0, 1] with a mesh of

points ih for i = 0,1,2,...,N+1 (so h=1/(N +1)), and let u; = u(ih) and
gi = h*f(ih). Then

—ui_1—|—2ui—ui+1:—gi fOI'?::]_,27...,N

uy = un4+1 = 0.
Listing the equations in order, we have
Tu = —g,

where T is a tridiagonal matrix with 2 on the main diagonal and -1 on the
first sub and superdiagonals. For example, for N = 5, we have T € R>*®
given by

2 -1 0 0 0
-1 2 -1 0 O
T=10 -1 2 -1 0
o 0 -1 2 -1
0O 0 0 -1 2
Relax!
Suppose we wanted to solve a system like T'u = —g using an iterative method.

That is, we are willing to put aside the machinery we’ve built for directly
solving the system through a factorization, and instead we will construct a
sequence of guesses u® that will converge to the true solution as k — oo.
How should we do this?

The key point here is that we don’t necessarily care that u*+") should
be the true answer — it should just be more right than «®). So it is natural
to try to relax the problem so that we can “fix up” the solution by a little
bit at each step. For example, if we believe that u® is a good guess, then
we might try to fix up v**1) by making sure that the variable at each point
in the new steps satisfies the balance equation at that same point (assuming

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

that the neighbor data comes from the old step). That is, for each i we would
compute a new approximate solution value using

k k+1 k
—ug_)l + 2u§) _ u§+)1 = —g;.
This is Jacobi iteration.
Suppose we programmed Jacobi iteration sweeping from ¢ = 1 up to

i= N

% Perform a single Jacobi iteration, computing unew from u
unew(l) = (u(2)—g(1))/2;

for i = 2:N—-1
lgleW(i) = (u(i-1)+u(i+1)—g(i))/2;

unew(N) = (u(N-1)-g(1))/2;

+1)

Notice that at the time we have computed ufk in this code, we have also

computed ug’j?). Wouldn't it be better to update ugkﬂ) using this new value,
instead of the old one? This natural idea is sometimes called Gauss-Seidel
iteration:

D+ 2) =
When we program a Gauss-Seidel iteration, we can get away with just a
single vector for the approximate solution that is overwritten during each

sweep:

% Perform a Gauss—Seidel sweep, overwriting u with updated gquesses

u(1) = (u(2)=g(1))/2;

for i = 2:N-1
lﬁi) = (u(i—1)+u(i+1)—g(i))/2;

unew(N) = (u(N-1)-g(1))/2;

Unfortunately, as we have presented them so far, it seems like it would
be a mess to analyze the convergence of either Jacobi or Gauss-Seidel. In
order to stay sane during such convergence analysis, we would like a clean
notation, and it is to this topic we now turn.

T have assumed the MATLAB vector u only holds the active variables uq,...,uy. If
I kept a little extra space for the boundary values uwg = uy+1 = 0, I could get rid of the
special-case updates for u; and uy.

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

The Matrix Splitting Perspective

Consider the following general approach to constructing fixed-point iterations
to solve Ax = b:

1. Split A into two pieces: A = M — N. The matrix M should ideally
“look like” A, but it should be easy to solve linear systems involving
M (where it might not be so easy with A).

2. Iterate on
Mz* D = Nz®) 1 p,

or, equivalently,

(1) g *) = 2 A (A2 ™) —).

The fixed point for the iteration (1) is clearly z, = A~'0. Furthermore,
both Jacobi and Gauss-Seidel iteration can be written in terms of a matrix
splitting: for Jacobi, we take M to be the diagonal part of A, and for Gauss-
Seidel, we take M to be the lower triangular part.

Remember now that we have a general strategy for analyzing the conver-
gence of fixed point iterations, which is to subtract the fixed point equation
from the iteration equation in order to get an equation for error propogation.
In this case,

et — o®) _ Nt Ae®) = (T — M~1A)e®).
Now, notice that for any consistent choice of norms,
™0 = [(T = M~ A)e™ || < (I(1 — M~ A)|[[e®]],

so that if || — M~ A| < 1, the iteration converges. The converse is not quite
true, and in order to make a precise statement about convergence we need to
reason about the spectral radius of I — M ~'A. But this norm-based bound is
good enough for our present purposes, and we will leave the spectral analysis
to another time.

