
Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

Week 5: Wednesday, Feb 29

Of cabbages and kings

The past three weeks have covered quite a bit of ground. We’ve looked at
linear systems and least squares problems, and we’ve discussed Gaussian
elimination, QR decompositions, and singular value decompositions. Rather
than doing an overly hurried introduction to iterative methods for solving
linear systems, I’d like to go back and show the surprisingly versatile role
that the SVD can play in thinking about all of these problems.

Geometry of the SVD

How should we understand the singular value decomposition? We’ve already
described the basic algebraic picture:

A = UΣV T ,

where U and V are orthonormal matrices and Σ is diagonal. But what about
the geometric picture?

Let’s start by going back to something we glossed over earlier in the
semester: the characterization of the matrix 2-norm. By definition, we have

‖A‖2 = max
x 6=0

‖Ax‖2
‖x‖2

This is equivalent to

‖A‖22 = max
x 6=0

‖Ax‖22
‖x‖22

= max
x6=0

xTATAx

xTx
.

The quotient φ(x) = (xTATAx)/(xTx) is differentiable, and the critical
points satisfy

0 = ∇φ(x) =
2

xTx

(
ATAx− φ(x)x

)
That is, the critical points of φ – including the value of x that maximizes φ
– are eigenvectors of A. The corresponding eigenvalues are values of φ(x).
Hence, the largest eigenvalue of ATA is σ2

1 = ‖A‖22. The corresponding
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Figure 1: Graphical depiction of an SVD of A ∈ R2×2. The matrix A maps
the unit circle (left) to an oval (right); the vectors v1 (solid, left) and v2
(dashed, left) are mapped to the major axis σ1u1 (solid, right) and the minor
axis σ2u2 (dashed, right) for the oval.

eigenvector v1 is the right singular vector corresponding to the eigenvalue σ2
1;

and Av1 = σ1u1 gives the first singular value.
What does this really say? It says that v1 is the vector that is stretched

the most by multiplication by A, and σ1 is the amount of stretching. More
generally, we can completely characterize A by an orthonormal basis of right
singular vectors that are each transformed in the same special way: they
get scaled, then rotated or reflected in a way that preserves lengths. Viewed
differently, the matrix A maps vectors on the unit sphere into an ovoid shape,
and the singular values are the lengths of the axes. In Figure 1, we show this
for a particular example, the matrix

A =

[
0.8 −1.1
0.5 −3.0

]
.

Conditioning and the distance to singularity

We have already seen that the condition number for linear equation solving
is

κ(A) = ‖A‖‖A−1‖



Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

When the norm in question is the operator two norm, we have that ‖A‖ = σ1
and ‖A−1‖ = σ−1n , so

κ(A) =
σ1
σn

That is, κ(A) is the ratio between the largest and the smallest amounts by
which a vector can be stretched through multiplication by A.

There is another way to interpret this, too. If A = UΣV T is a square
matrix, then the smallest E (in the two-norm) such that A − E is exactly
singular is A− σnunvTn . Thus,

κ(A)−1 =
‖E‖
‖A‖

is the relative distance to singularity for the matrix A. So a matrix is ill-
conditioned exactly when a relatively small perturbation would make it ex-
actly singular.

For least squares problems, we still write

κ(A) =
σ1
σn
,

and we can still interpret κ(A) as the ratio of the largest to the smallest
amount that multiplication by A can stretch a vector. We can also still
interpret κ(A) in terms of the distance to singularity – or, at least, the
distance to rank deficiency. Of course, the actual sensitivity of least squares
problems to perturbation depends on the angle between the right hand side
vector b and the range ofA, but the basic intuition that big condition numbers
means problems can be very near singular – very nearly ill-posed – tells us
the types of situations that can lead us into trouble.

Orthogonal Procrustes

The SVD can provide surprising insights in settings other than standard least
squares and linear systems problems. Let’s consider one interesting one that
comes up when doing things like trying to align 3D models with each other.

Suppose we are given two sets of coordinates form points in n-dimensional
space, arranged into rows of A ∈ Rm×n and B ∈ Rm×n. Let’s also suppose
the matrices are (approximately) related by a rigid motion that leaves the
origin fixed. How can we recover the transformation? That is, we want an
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orthogonal matrix W that minimizes ‖AW −B‖2F . This is sometimes called
an orthogonal Procrustes problem, named in honor of the legendary Greek
king Procrustes, who had a bed on which he would either stretch guests or
cut off their legs in order to make them fit perfectly.

We can write ‖AW −B‖2F as

‖AW −B‖2F = (‖A‖2F + ‖B‖2F )− tr(W TATB),

so minimizing the squared residual is equivalent to maximizing tr(W TATB).
Note that if ATB = UΣV T , then

tr(W TATB) = tr(W TUΣV T ) = tr(VWUTΣ) = tr(ZΣ),

where Z = VWUT is orthogonal. Now, note that

tr(ZΣ) = tr(ΣZ) =
∑
i

σizii

is maximal over all orthogonal matrices when zii = 1 for each i. Therefore,
the trace is maximized when Z = I, corresponding to W = UV T .

Problems to Ponder

1. Suppose A ∈ Rn×n is invertible and A = UΣV T is given. How could
we use this decomposition to solve Ax = b in O(n2) additional work?

2. What are the singular values of A−1 in terms of the singular values of
A?

3. Suppose A = QR. Show κ2(A) = κ2(R).

4. Suppose that ATA = RTR, where R is an upper triangular Cholesky
factor. Show that AR−1 is a matrix with orthonormal columns.

5. Show that if V and W are orthogonal matrices with appropriate di-
mensions, then ‖V AW‖F = ‖A‖F .

6. Show that if X, Y ∈ Rm×n and tr(XTY ) = 0 then ‖X‖2F + ‖Y ‖2F =
‖X + Y ‖2F .

7. Why do the diagonal entries of an orthogonal matrix have to lie be-
tween −1 and 1? Why must an orthogonal matrix with all ones on the
diagonal be an identity matrix?


