Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

Week 5: Monday, Feb 27

Least squares reminder

Last week, we started to discuss least squares solutions to overdetermined
linear systems:
minimize || Az — b||5

where A € R™*" ¢ € R, b € R™ with m > n. We described two different
possible methods for computing the solutions to this equation:

e Solve the normal equations
AT Az = A",

which we derived by finding the critical point for the function ¢(x) =
| Az — b2

e Compute the QR decomposition

A=[Q1 Q] [ROH} = Q1R

where () = [Ql QQ] is an orthogonal matrix and Ry, is upper trian-
gular. Use the fact that multiplication by orthogonal matrices does not
change Fuclidean lengths to say

1Az — 0] = |Q" (Az — b)|?

[ Bn Q1Tb
o [T |t

= [Ruz — QU0[* + Q2 blf*.

2

The second term in the last expression is independent of b; the first
term is nonnegative, and can be set to zero by solving the triangular
linear system Ryjx = QT

So far, our discussion has mostly depended on the algebra of least squares
problems. But in order to make sense of the sensitivity analysis of least
squares, we should also talk about the geometry of these problems.
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Figure 1: Schematic of the geometry of a least squares problem. The residual
vector r = Ax — b is orthogonal to any vector in the range of A.

Least squares: a geometric view
The normal equations are often written as
AT Az = AT,
but we could equivalently write
r=Ar —b
ATr =0.

That is, the normal equations say that at the least squares solution, the
residual » = Az — b is orthogonal to all of the columns of A, and hence to
any vector in the range of A.

By the same token, we can use the QR decomposition to write

r=Q:Q50,
Az = Ql@ipb-

That is, the QR decomposition lets us write b as a sum of two orthogonal
components, Az and r. Note that the Pythagorean theorem therefore says

[Az|* + [Ir[* = [Ib]]*.

Figure 1 illustrates the geometric relations between b, r, A, and z. It’s
worth spending some time to stare at and comprehend this picture.
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Sensitivity and conditioning

At a high level, there are two pieces to solving a least squares problem:
1. Project b onto the span of A.
2. Solve a linear system so that Ax equals the projected b.

Correspondingly, there are two ways we can get into trouble in solving least
squares problem: either b may be nearly orthogonal to the span of A, or the
linear system might be ill-conditioned.

Let’s consider the issue of b nearly orthogonal to A first. Suppose we have

the trivial problem
1 €
A=lof o[

The solution to this problem is z = €; but the solution for

1 - —€
A=l -3

is & = —e. Note that [|b — b||/||b]| ~ 2¢ is small, but |# — z|/|z| = 2 is
huge. That is because the projection of b onto the span of A (i.e. the
first component of b) is much smaller than b itself; so an error in b that is
small relative to the overall size may not be small relative to the size of the
projection onto the columns of A.

Of course, the case when b is nearly orthogonal to A often corresponds to
a rather silly regression, like trying to fit a straight line to data distributed
uniformly around a circle, or trying to find a meaningful signal when the
signal to noise ratio is tiny. This is something to be aware of and to watch
out for, but it isn’t exactly subtle: if ||r|/||b|| is close to one, we have a
numerical problem, but we also probably don’t have a very good model. A
more subtle issue problem occurs when some columns of A are nearly linearly
dependent (i.e. A is ill-conditioned).

The condition number of A for least squares is

k(A) = ANAT] = 5(R1) = V/K(ATA).

We generally recommend solving least squares via QR factorization because
k(Ry) = k(A), while forming the normal equations squares the condition
number. If k(A) is large, that means:
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1. Small relative changes to A can cause large changes to the span of A
(i.e. there are some vectors in the span of A that form a large angle
with all the vectors in the span of A).

2. The linear system to find z in terms of the projection onto A will be
ill-conditioned.

If # is the angle between b and the range of A', then the sensitivity to
perturbations in b is

|Az] _ w(A) [|ob]

Jzl| -~ cos(6) [1b]| °
while the sensitivity to perturbations in A is
[Az]| 2 1E]]
< (k(A)“tan(d) + x(A)) -
ElRA )l

Even if the residual is moderate, the sensitivity of the least squares problem
to perturbations in A (either due to roundoff or due to measurement error)
can quickly be dominated by x(A)? tan(f) if x(A) is at all large.

Ill-conditioned problems

In regression problems, the columns of A correspond to explanatory factors.
For example, we might try to use height, weight, and age to explain the
probability of some disease. In this setting, ill-conditioning happens when
the explanatory factors are correlated — for example, perhaps weight might
be well predicted by height and age in our sample population. This hap-
pens reasonably often. When there is some correlation, we get moderate ill
conditioning, and might want to use QR factorization. When there is a lot
of correlation and the columns of A are truly linearly dependent (or close
enough for numerical work), or when there A is contaminated by enough
noise that a moderate correlation seems dangerous, then we may declare
that we have a rank-deficient problem.

What should we do when the columns of A are close to linearly depen-
dent (relative to the size of roundoff or of measurement noise)? The answer
depends somewhat on our objective for the fit, and whether we care about
x on its own merits (because the columns of A are meaningful) or we just
about Ax:

!Note that b, Az, and r are three sides of a right triangle, so sin(6) = ||r||/||b||.
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1. We may want to balance the quality of the fit with the size of the
solution or some similar penalty term that helps keep things unique.
This is the reqularization approach.

2. We may want to choose a strongly linearly independent set of columns
of A and leave the remaining columns out of our fitting. That is, we
want to fit to a subset of the available factors. This can be done using
the leading columns of a pivoted version of the QR factorization AP =
QR. This is sometimes called parameter subset selection. MATLAB’s
backslash operator does this when A is numerically singular.

3. We may want to choose the “most important” directions in the span
of A, and use them for our fitting. This is the idea behind principal
components analysis.

We will focus on the “most important directions” version of this idea,
since that will lead us into our next topic: the singular value decomposition.
Still, it is important to realize that in some cases, it is more appropriate to
add a regularization term or to reduce the number of fitting parameters.

Singular value decomposition

The singular value decomposition (SVD) is important for solving least squares
problems and for a variety of other approximation tasks in linear algebra. For
A € R™"2 we write

A=Uxv"

where U € R™™ and V € R™*" are orthogonal matrices and ¥ € R™*" is
diagonal. The diagonal matrix > has non-negative diagonal entries

012092 ...20,2>0.
The o, are called the singular values of A. We sometimes also write

2y

A= [0 UQ}{O

1 LARARE DA

where U; € R™*™ ¥, € R™" 1V} € R™"™. We call this the economy SVD.

2We will assume for the moment that m > n. Everything about the SVD still makes
sense when m < n, though.
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We can interpret the SVD geometrically using the same picture we drew
when talking about the operator two norm. The matrix A maps the unit ball
to an ellipse. The axes of the ellipse are oiuy, oous, etc, where the o; give the
lengths and the u; give the directions (remember that the u; are normalized).
The columns of V' are the vectors in the original space that map onto these
axes; that is, Av; = o;u;.

We can use the geometry to define the SVD as follows. First, we look for
the major axis of the ellipse formed by applying A to the unit ball:

0? = max || Av||* = max vT (AT A)v.
[[v]l=1 lv]|=1
Some of you may recognize this as an eigenvalue problem in disguise: o} is
the largest eigenvalue of AT A, and v; is the corresponding eigenvector. We
can then compute u; by the relation oju; = Avy. To get o5, we restrict our
attention to the spaces orthogonal to what we have already seen:

of = max |Auf*.
[lv]|=1,v Loy, Av Luy

We can keep going to get the other singular values and vectors.

Norms, conditioning, and near singularity

Given an economy SVD A = UXVT, we can give satisfyingly brief descrip-
tions (in the two norm) of many of the concepts we've discussed so far in
class. The two-norm of A is given by the largest singular value: ||All2 = o1.
The pseudoinverse of A, assuming A is full rank, is

(ATArA=Ux"VT

which means that ||Af||; = 1/0,,. The condition number for least squares (or
for solving the linear system when m = n) is therefore

k(A) =o01/0,.

Another useful fact about the SVD is that it gives us a precise charac-
terization of what it means to be “almost” singular. Suppose A = UXV7?
and F is some perturbation. Using invariance of the matrix two norm under
orthogonal transformations (the problem du jour), we have

1A+ Ell = [US + E)VT| = ||I= + E]],
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where ||E|| = |[UTEV| = ||E|. For the diagonal case, we can actually
characterize the smallest perturbation F that makes ¥+ E singular. It turns
out that this smallest perturbation is £ = —o,e,el (i.e. something that
zeros out the last singular value of ). Therefore, we can characterize the
smallest singular value as the distance to singularity:

o, = min{||E||y : A+ E is singular}.

The condition number therefore is a relative distance to singularity, which is
why I keep saying ill-conditioned problems are “close to singular.”

The SVD and rank-deficient least squares

If we substitute A = UXV7 in the least squares residual norm formula, we
can “factor out” U just as we pulled out the @) factor in QR decomposition:

|Az —b|| = |[USVTz — b|| = |23 — b||, where & = V7z and b= U"b.

Note that [|Z]| = [l]| and |[b[| = {|b].

If A has rank r, then singular values o,,1, ..., 0, are all zero. In this case,
there are many different solutions that minimize the residual — changing the
values of 7, through z,, does not change the residual at all. One standard
way to pick a unique solution is to choose the minimal norm solution to the
problem, which corresponds to setting z,,1; = ... = &,, = 0. In this case, the
Moore-Penrose pseudoinverse is defined as

At =v,y 't

where ¥, = diag(o1,09,...,0,) and U, and V, consist of the first r left and
right singular vectors.

If A has entries that are not zero but small, it often makes sense to use
a truncated SVD. That is, instead of setting Z; = 0 just when o; = 0, we
set ; = 0 whenever o is small enough. This corresponds, if you like, to
perturbing A a little bit before solving in order to get an approximate least
squares solution that does not have a terribly large norm.

Why, by the way, might we want to avoid large components? A few
reasons come to mind. One issue is that we might be solving linear least
squares problems as a step in the solution of some nonlinear problem, and
a large solution corresponds to a large step — which means that the local,
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linear model might not be such a good idea. As another example, suppose
we are looking at a model of patient reactions to three drugs, A and B. Drug
A has a small effect and a horrible side effect. Drug B just cancels out the
horrible side effect. Drug C has a more moderate effect on the problem of
interest, and a different, small side effect. A poorly-considered regression
might suggest that the best strategy would be to prescribe A and B together
in giant doses, but common sense suggests that we should concentrate on
drug C. Of course, neither of these examples requires that we use a truncated
SVD — it might be fine to use another regularization strategy, or use subset
selection.



