Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

Week 4: Wednesday, Feb 15

A summary

From Monday, you should have learned:

1. Gaussian elimination can be seen as the computation of a matrix fac-
torization PA = LU, where L is a unit lower triangular matrix L whose
entries are the multipliers used in the elimination process; U is an up-
per triangular matrix; and P is a permutation matrix corresponding to
row re-ordering during partial pivoting.

2. Solving a linear system by Gaussian elimination consists of two steps:
factoring the matrix (which costs O(n?)) and solving triangular systems
with forward and backward substitution (which costs O(n?)).

3. Most of the entries in a sparse matrix are zero. We can represent a
sparse matrix compactly by only storing the location and values of the
nonzero entries. (Gaussian elimination on sparse matrices sometimes
yields sparse factors, but the order of elimination matters. The MAT-
LAB call

[LvvaaQ] = lu(A)a

factors a sparse matrix A as PAQ = LU, where P, L, and U are as
before, and the permutation matrix ¢ is automatically computed in
order to try to keep L and U sparse.

Today, we'll look at
1. Condition numbers and some basic error analysis for linear systems.
2. Cholesky factorization for symmetric, positive definite matrices.

3. How Cholesky factorization actually gets implemented.

Partial pivoting

I only said a little last time about the role of the permutation matrix P in
the factorization. The reason that P is there is to help control the size of

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

the elements in L. For example, consider what happens when we factor the
following matrix without pivoting:

L S e

If we round ugge to —e~ !, then we have

[6}1 (1)] {8 _61—1} - [i (1)] £ Al

that is, a rounding error in the (huge) wugy entry causes a complete loss of
information about the asy component.

In this example, the l5; and ugs terms are both huge. Why does this
matter? When L and U have huge entries and A does not, computing the
product LU must inevitably involve huge cancellation effects, and we have
already seen the danger of cancellation in previous lectures. The partial
pivoting strategy usually used with Gaussian elimination permutes the rows
of A so that the multipliers at each step (the coefficients of L) are at most
one in magnitude. Even with this control on the elements of L, it is still
possible that there might be “pivot growth”: that is, elements of U might
grow much larger than those in A. But while it is possible to construct test
problems for which pivot growth is exponential, in practice such cases almost
never happen.

Alas, even when GEPP works well, it can produce answers with large
relative errors. In some sense, though, the fault lies not in our algorithms, but
in our problems. In order to make this statement precise, we need to return
to a theme from the first week of classes, and discuss condition numbers.

Warm-up: Error in matrix multiplication

Suppose § = (A + E)z is an approximation to y = Az. What is the error in
using ¢ to approximate y? We can write an equation for the absolute error:

y—y= b,
and using norms, we have

19—yl < [IE]]|=]]

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

This is all well and good, but we would really like an expression involving
relative errors. To get such an expression, it’s helpful to play around with
norms a little more. Assuming A is invertible, we have

[l = [A=yl < LAyl

so that

~

17—yl —yLE]]
< [JA[A™ I T
Iyl 1Al

That is, the quantity
K(A) = [lA[[[A7

serves as a condition number that relates the size of relative error in the
computed result y to the size of relative error in the matrix A. Note that
this condition number is a function of the problem formulation, and does not
depend on the way that we implement matrix multiplication.

It is a straightforward (if tedious) exercise in rounding error analysis to
show that if we compute y = Az in the usual way in floating point arith-
metic, the computed result y will actually satisfy g = (A + E)z, where
|Eij| < Mémacn|Aij|. That is, g is the ezact result for a slightly perturbed
problem. The perturbation FE is called a backward error. For the matrix
norms we have discussed, this element-wise inequality implies the norm in-

equality || F||/||A]| < ne. Thus, the relative error in matrix multiplication is
bounded by

19—yl < 5(A) - ne.

[yl
Since the numerical computation always has a small backward error, we say
the algorithm is backward stable (or sometimes just stable). If the problem is
additionally well-conditioned (so that k(A) is small), then the forward relative
error ||g — y||/|ly|| will be small. But if the condition number is large, the
forward error may still be big.

From multiplication to linear solves

Now suppose that instead of computing y = Az, we want to solve Ax = b.
How sensitive is this problem to changes in A? We know already how to
differentiate A~! with respect to changes in A; using this knowledge, we can

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

write a first-order sensitivity formula relating small changes 6 A in the system
matrix to small changes dx in the solution:

5z~ —AYGA)A D = —A1(5A)z.

Taking norms gives
loz]| < 1A [[l8 A,

which we can rearrange to get

o] [0A]
S K(A) T
] 1Al
That is, the condition number k(A) = || A||||A™|| once again relates relative

error in the matrix to relative error in the result. Another very useful result
is that Il

< i

S k(A) R

where r = b— Az is the residual error, or the extent to which the approximate
solution 7 fails to satisfy the equations.

Gaussian elimination with partial pivoting is almost always backward
stable in practice. There are some artificial examples where “pivot growth”
breaks backward stability, but this never seems to occur in practice; and if it
does occur, one can cheaply evaluate the relative residual in order to evaluate
the solution. What this means in practice is that solving linear systems with
Gaussian elimination with partial pivoting almost always results in a small
relative residual (on the order of some modestly growing function in n times
€mach, for example). However, a small relative residual only translates to a
small relative error if the condition number is also not too big!

Cholesky factorization

For matrices that are symmetric and positive definite, the Cholesky factor-
1zation

A=LL"

is an attractive alternative to Gaussian elimination. Here, the Cholesky factor
L is a lower triangular matrix; by convention, the diagonal of L is chosen to be

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

positive. Sometimes, the Cholesky factorization is written in the equivalent
form

A=R'R

where R is upper triangular; this is the convention used by default in MAT-
LAB. One way to see this factorization is as a generalization of the posive
square root of a positive real number!

The Cholesky factorization is useful for solving linear systems, among
other things. Cholesky factors also show up in statistical applications, such
as sampling a multivariate normal with given covariance; and the existence
of a (nonsingular) Cholesky factor is equivalent to A being positive defi-
nite, so Cholesky factorization is sometimes also used to check for positive
definiteness. Even if we're only interested in linear systems, the Cholesky fac-
torization has a very attractive feature compared to Gaussian elimination:
it can be stably computed without pivoting. Because pivoting is sort of a
pain, I'm going to leave the discussion of the algorithmic details of Gaussian
elimination to the book, but I will walk through some ideas behind Cholesky
factorization.

Let’s start with the Cholesky factorization of a 2-by-2 matrix:

aiy az| _ |l O |l In

aiz2 Q22 lor lao| |0 lo2]
We can write this matrix equation as three scalar equations, which we can
easily use to solve for the Cholesky factor

2
ap = 111 li = Va1
a1z = lorlny loy = Cl12/l11
_ 72 2 _ 2
99 = l22 + l21 122 = 99 — l21.

This picture actually generalizes. Now suppose we write down a block

matrix formula:
a1 agl . l11 0 lll lgl
agr Az loy Loz | 0 Loy
'Tt’s worth noting that the matrix square root of an SPD matrix A is actually a sym-
metric positive definite matrix B such that A = B2?. So while the Cholesky factor is a

generalization of square roots to matrices, it is not the generalization that gets called “the
matrix square root.”

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

Here, we'’re thinking of a1; and [y, as scalars, ag; and ly; as column vectors,
and Ags and Lo as matrices. Working out the multiplication, we again have
three equations:

2
ap = 511 lh = Va1

as1 = larliy loy = Gzllﬁl
Agy = L22L2Tg + lzllng L22L52 = Ay — l2112Tl~

We can compute the first column of the Cholesky factor by the first two of
these equations, and the remaining equation tells us how to express the rest
of L as the Cholesky factor for a smaller matrix. Here’s the idea in MATLAB:

function L = lec0O8chol(A)

n = length(A);
L = zeros(n);

for j = 1:n
% Compute column j of L
L(j,j) = sart(A(.j));
L(j+1m,j) = A(+1m,j)/L(j,));

% Update the trailing submatriz (a ”Schur complement”)
A(j+1m,j+1n) = A(G+1m,j+1m)—L(j+1mn,j)*L{G+1m,j);

end

Actually, MATLAB uses an even more sophisticated algorithm based on a
block factorization

All A12:| — |:L11 0 :| |:L11 L21:|
A12 A22 L21 L22 0 L22 ‘

The L1 part of the factor is the Cholesky factorization of A1, which is com-
puted by a small Cholesky factorization routine; the block Lo = AglLﬁl is
computed by triangular solves; and then Lo is computed by a block factor-
ization of the Schur complement Ay — L21Lgl. This organization turns out
to be very useful for writing cache-efficient code that is able to do a lot of
work on a small part of the matrix before moving on to other parts of the
computation.

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

Problems to ponder

1.

Suppose you were given P, L, and U such that PA = LU. How would
you solve ATz = b?

. Suppose A = LU. How could you compute det(A) efficiently using the

L and U factors®?

Show that the product of two unit lower triangular matrices is again
unit lower triangular.

I claimed that if A has a nonsingular Cholesky factor, then A is SPD.
Why is that so?

Suppose
e 1
=[]
What is the one-norm condition number xi(A) = || A1 [|A7Y]1?
I claimed in class that

Using the formula r = Az — b = A(Z — x) and properties of norms,
argue why this must be true.

. What is the Cholesky factor of A?

4 4 2
A=14 20 34
2 34 74

What is the determinant?

2When I taught multivariable calculus, I actually started off with this method for
computing determinants. It has a nice interpretation if you think about an elementary
operation in Gaussian elimination as a shear transformation, which preserves volumes.

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

8. Write an O(n) code to compute the Cholesky factor of an SPD tridiago-

nal matrix given the diagonal entries aq, . .., a, and off-diagonal entries
bi,ba, ... by 1: i i
ar b
by az by
A= by az b3
L bn_l an_

9. Harder. In order to test whether or not a matrix A is singular, one
sometimes uses a bordered linear system. If A € R™ " we choose
b,c € R™ and d € R at random and try to solve the equation

B 1)

If the extended matrix is singular, then A almost certainly has a null
space of at least dimension two; otherwise, with high probability, y = 0
iff A is singular. Why does this make sense?

