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Week 3: Wednesday, Feb 8

Spaces and bases

I have two favorite vector spaces1: Rn and the space Pd of polynomials of
degree at most d. For Rn, we have a canonical basis:

Rn = span{e1, e2, . . . , en},

where ek is the kth column of the identity matrix. This basis is frequently
convenient both for analysis and for computation. For Pd, an obvious-
seeming choice of basis is the power basis:

Pd = span{1, x, x2, . . . , xd}.

But this obvious-looking choice turns out to often be terrible for computation.
Why? The short version is that powers of x aren’t all that strongly linearly
dependent, but we need to develop some more concepts before that short
description will make much sense.

The range space of a matrix or a linear map A is just the set of vectors y
that can be written in the form y = Ax. If A is full (column) rank, then the
columns of A are linearly independent, and they form a basis for the range
space. Otherwise, A is rank-deficient, and there is a non-trivial null space
consisting of vectors x such that Ax = 0.

Rank deficiency is a delicate property2. For example, consider the matrix

A =

[
1 1
1 1

]
.

This matrix is rank deficient, but the matrix

Â =

[
1 + δ 1

1 1

]
.

is not rank deficient for any δ 6= 0. Technically, the columns of Â form a
basis for R2, but we should be disturbed by the fact that Â is so close to a
singular matrix. We will return to this point in some detail next week.

1This is a fib, but not by too much.
2Technically, we should probably say that rank deficiency is non-generic rather than

“delicate.”



Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

Norm!

In order to talk sensibly about a matrix being “close to” singular or a basis
being “close to” linear dependence, we need the right language.

First, we need the concept of a norm, which is a measure of the length
of a vector. A norm is a function from a vector space into the real numbers
with three properties

1. Positive definiteness: ‖x‖ > 0 when x 6= 0 and ‖0‖ = 0.

2. Homogeneity: ‖αx‖ = |α|‖x‖.

3. Triangle inequality: ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

One of the most popular norms is the Euclidean norm (or 2-norm):

‖x‖2 =

√√√√ n∑
i=1

|xi|2 =
√
xTx.

We will also use the 1-norm and the ∞-norm (a.k.a. the max norm or the
Manhattan norm):

‖x‖1 =
∑
i

|xi|.

‖x‖∞ = max
i
|xi|

Second, we need a way to relate the norm of an input to the norm of
an output. We do this with matrix norms. Matrices of a given size form
a vector space, so in one way a matrix norm is just another type of vector
norm. However, the most useful matrix norms are consistent with vector
norms on their domain and range spaces, i.e. for all vectors x in the domain,

‖Ax‖ ≤ ‖A‖‖x‖.

Given norms for vector spaces, a commonly-used consistent norm is the in-
duced norm (operator norm):

‖A‖ ≡ max
x 6=0

‖Ax‖
‖x‖

= max
‖x‖=1

‖Ax‖.
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The matrix 1-norm and the matrix ∞-norm (the norms induced by the
vector 1-norm and vector ∞-norm) are:

‖A‖1 = max
j

(∑
i

|aij|

)
(max abs column sum)

‖A‖∞ = max
j

(∑
i

|aij|

)
(max abs row sum)

If we think of a vector as a special case of an n-by-1 matrix, the vector 1-norm
matches the matrix 1-norm, and likewise with the ∞-norm. This is how I
remember which one is the max row sum and which is the max column sum!

The matrix 2-norm is very useful, but it is actually much harder to com-
pute than the 1-norm or the ∞-norm. There is a related matrix norm, the
Frobenius norm, which is much easier to compute:

‖A‖F =

√∑
i,j

|a2ij|.

The Frobenius norm is consistent, but it is not an operator norm3

Matlab allows us to compute all the vector and matrix norms describe
above with the norm command. For example, norm(A, ’fro’) computes
the Frobenius norm of a matrix A, while norm(x,1) computes the 1-norm
of a vector x. The default norm, which we get if we just write norm(A) or
norm(x), is the Euclidean vector norm (a.k.a. the 2-norm) and the corre-
sponding operator norm.

The ideas of vector norms and operator norms make sense on spaces other
than Rn, too. For example, one choice of norms for Pd is

‖p‖L2([−1,1]) =

√∫ 1

−1
p(x)2 dx.

You will note that this looks an awful lot like the standard Euclidean norm;
we also have analogues of the 1-norm and the ∞-norm in this case. The
norms for spaces of functions (like Pd) are actually a more interesting topic
than the norms of Rn, but an extended discussion is (lamentably) beyond
the scope of what I can reasonably fit into this course.

3The first half of this sentence is basically Cauchy-Schwarz; the second half of the
sentence can be seen by looking at ‖I‖F . If you don’t understand this footnote, no worries.
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Inner products

Norms are the tools we need to measure lengths and distances. Inner products
are the tools we need to measure angles. In general, an inner product satisfies
three axioms:

• Positive definiteness: 〈u, u〉 ≥ 0, with equality iff u = 0.

• Symmetry: 〈u, v〉 = 〈v, u〉

• Linearity: 〈αu, v〉 = α〈u, v〉 and 〈u1 + u2, v〉 = 〈u1, v〉+ 〈u2, v〉.

For every inner product, we have an associated norm: ‖u‖ =
√
〈u, u〉. An

important identity relating the inner product to the norm is the Cauchy-
Schwartz inequality:

〈u, v〉 ≤ ‖u‖‖v‖.
Equality holds only if u and v are parallel. Vectors u and v are orthogonal if
〈u, v〉 = 0. In general, the angle α between nonzero vectors u and v is defined
by the relation

cos(α) =
〈u, v〉
‖u‖‖v‖

.

If x and y are in Rn, the standard inner product is:

〈x, y〉 = xTy =
n∑

i=1

xiyi.

We say vectors u1, u2, . . . , uk are orthonormal if they mutually orthogonal
and have unit Euclidean length, i.e.

〈ui, uj〉 = δij =

{
1, i = j

0, otherwise.

Somewhat oddly, though, we define an orthogonal matrix to be a square
matrix whose columns are orthonormal (i.e. a matrix Q such that QTQ = I).
When we say a matrix is orthogonal, we usually really mean “orthogonal with
respect to the standard inner product on Rn”; if the matrix is orthogonal with
respect to some other inner product, we say so explicitly.

One very useful property of orthogonal matrices is that they preserve
Euclidean length. That is, if Q is orthogonal, then

‖Qx‖2 = (Qx)T (Qx) = xTQTQx = xTx = ‖x‖2.
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From time to time, I may talk about “unitary operations”; if I do, I generally
mean linear maps that have this property of preserving Euclidean length4

Of course, other spaces can also have useful inner products. For example,
a standard choice of inner products for Pd is

〈p, q〉L2([−1,1]) =

∫ 1

−1
p(x)q(x) dx.

The power basis {1, x, x2, . . . , xd} is decidedly not orthonormal with respect
to this inner product. On the other hand the Legendre polynomials, which
play a critical role in the theory of Gaussian integration, do form an orthog-
onal basis for Pd with respect to this inner product.

Symmetric matrices and quadratic forms

The multi-dimensional version of Taylor’s theorem says that we can write
any sufficiently nice function from Rn → R as

f(x0 + z) = f(x0) +
∑
i

∂f

∂xi
zi +

1

2

∑
i,j

∂2f

∂xi∂xj
zizj +O(‖z‖3).

We sometimes write this more concisely as

f(x0 + z) = f(x0) +∇f(x0)
T z +

1

2
zTHf (x0)z +O(‖z‖3),

where the Hessian matrix Hf (x0) has entries which are second partials of f
at x0. Still assuming that f is nice, we have that

(Hf (x0))ij =
∂2f

∂xi∂xj
=

∂2f

∂xj∂xi
= (Hf (x0))ji ;

that is, the Hessian matrix is symmetric.
A quadratic form on Rn is function of the form

φ(x) = xTAx.

4I’ll expect you to know what an orthogonal matrix is going forward, but if I ever say
“unitary operation” and you forget what I mean, just ask me.
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We typically assume A is symmetric, since only the symmetric part of the
matrix matters.5 Quadratic forms show up frequently throughout applied
mathematics, partly because second-order Taylor expansions show up fre-
quently. Symmetric matrices also show up more-or-less constantly; and when
they do, there is often a quadratic form lurking behind the scenes.

A symmetric matrix A is positive definite if the corresponding quadratic
form φ(x) = xTAx is positive definite — that is, φ(x) ≥ 0 for all x, with
equality only at x = 0. You’ve likely seen the notion of positive definiteness
before in multivariable calculus: if a function f has a critical point at x0
and Hf (x0) is positive definite, then x0 is a local minimum. You’ve also seen
the notion of positive definiteness earlier in these notes, since the quadratic
form associated with an inner product (‖u‖2 = 〈u, u〉) must be positive def-
inite. Matrices that are symmetric and positive definite occur so frequently
in numerical linear algebra that we often just call them SPD matrices6.

Quadratic forms are characterized by the fact that they are quadratic;
that is, φ(αx) = α2φ(x). It is sometimes convenient to get rid of the effects
of scaling vectors, and so we define the Rayleigh quotient:

ρA(x) =
xTAx

xTx
.

It is interesting to differentiate ρA(x) to try to find critical points:

d

dt
ρA(x+ tw) =

wTAx+ xTAw

xTx
− (xTAx)(wTx+ xTw)

(xTx)2

=
2wT

xTAx
(Ax− ρA(x)x) .

At a critical point, where all the directional derivatives are zero, we have

Ax = ρA(x)x,

i.e. x is an eigenvector and ρA(x) is an eigenvalue. This connection between
eigenvalues of symmetric matrices and ratios of quadratic forms is immensely
powerful. For example, we can use it to characterize the operator two-norm

‖A‖22 = max
x 6=0

‖Ax‖2

‖x‖2
= max

x 6=0

xTATAx

xTx
= λmax(A

TA)

5The symmetric part of a general matrix A is (A + AT )/2.
6Abbreviations are our way of stalling RSI. Why do you think CS has so many TLAs?
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The other eigenvalues of ATA (the squared singular values) are also some-
times handy, and we’ll talk about them later.

We can also look at the eigenvalues of a symmetric matrix A to determine
whether the corresponding quadratic form is positive definite (all eigenvalues
of A positive), negative definite (all eigenvalues of A negative), or indefinite.

Problems to ponder

1. We said earlier that

‖A‖ ≡ max
x 6=0

‖Ax‖
‖x‖

= max
‖x‖=1

‖Ax‖.

Why is the equality true?

2. What are the range and null space of d
dx

viewed as a linear operator
acting on Pd? In terms of the power basis, how might you write d

dx
as

a matrix?

3. Using the inner product 〈·, ·〉L2([−1,1]), what is the angle between the
monomials xj and xk?

4. The Cauchy-Schwartz inequality says

〈u, v〉 ≤ ‖u‖‖v‖.

The easiest way I know to prove Cauchy-Schwartz is to write

φ(t) = 〈u+ tv, u+ tv〉 ≥ 0,

then use the properties of inner products to write φ(t) as a quadratic
function in t with coefficients given in terms of ‖u‖2, ‖v‖2, and 〈u, v〉.
Do this expansion, and write the discriminant of the resulting quadratic.
This discriminant must be non-positive in order for φ(t) to be non-
negative for all values of t; using this fact, show that Cauchy-Schwartz
must hold.

5. Given matrices X, Y ∈ Rm×n, we define the Frobenius inner product to
be

〈X, Y 〉 = tr(XTY ),

where tr(A) is the sum of the diagonal elements of A. Argue that this is
an inner product, and that the associated norm is the Frobenius norm.
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6. Show that when we have a norm induced by an inner product,

(‖u+ v‖2 − ‖u− v‖2)/4 = 〈u, v〉

7. Show that the operation p(x) 7→ p(−x) is unitary for Pd with the inner
product L2([−1, 1]).

8. Show that if A is an SPD matrix, then

〈x, y〉A = xTAy

is a valid inner product (sometimes called an energy inner product).

9. Assuming A is symmetric, define

ψ(x) =

(
1

2
xTAx− xT b

)
.

Give an expression for the directional derivatives

d

dt
ψ(x+ tu).

What equation must be satisfied at a critical point (i.e. a point where
all the directional derivatives are zero)?


