Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

Week 3: Monday, Feb 6

Subtle singularity

A square matrix A € R™" is called invertible or nonsingular if there is an
A~1 such that AA=! = I. Otherwise, A is called singular. There are several
common ways to characterize nonsingularity: A is nonsingular if it has an
inverse, if det(A) # 0, if rank(A) = n, or if null(A) = {0}. What would
happen if we tried to test these conditions numerically?

1. A has an inverse. How do we compute it? Is it sensitive to roundoff?

2. det(A) # 0. How do we compute determinants? The usual Laplace
expansion (also called the cofactor expansion) is very expensive for
large n! Also, consider what happens for A = /16 when n = 100.

3. rank(A) = n. How do we compute the rank? We might look for a basis
for the range space; how do we get that? Is this computation sensitive
to roundoff?

4. null(A) = {0}. How do we compute the null space of a matrix? Is the
computation sensitive to roundoff?

Even if A is singular, almost every matrix A close to A will be nonsingular.
Since we usually perturb problems just by storing them in floating point, it
may be too much to ask whether an interesting matrix is ezactly singular, or
to ask for the true rank. It turns out to be much more practical to ask whether
A is close to singular and whether there is an almost null space. It also turns
out that some constructions that look straightforward to compute, such as
explicit inverses and determinants, are poorly-behaved in floating point, and
so are rarely used in computational practice’.

LAt least, they are rarely used by people who took a class like this one and paid some
attention. They are often used in codes written by people who have never taken such a
class; and when codes like that break, people sometimes knock on my door. I sometimes
grumble about this, but I suppose I should consider it job security.

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

Matrices and vectors in Matlab

Vectors and matrices are basic objects in numerical linear algebra”. They are
also basic objects in MATLAB. For example, we can write a column vector®
xr € R? as

x=[1; 2; 3;
and a matrix A € R**3 as
A=115 9
2, 6, 10;
3, 7, 11;
4, 8, 12];

Internally, MATLAB uses column major layout — all the entries of the first
column of a matrix are listed first in memory, then all the entries of the
second column, and so on. This is actually visible at the user level in some
contexts. For example, when I enter A as above, the MATLAB expression
A(6) evaluates to 6; and if I write

fprintf(’%d\n’, A);

the output is the numbers 1 through 12, one per line.
I can multiply matrices and vectors with compatible dimensions using the
ordinary multiplication operator:

y = Axx; % Computes y = [38; 44; 50; 56]

The tic operator in MATLAB computes the (conjugate) transpose of a matrix
or a vector. For example:

b=1[1; 2|; % bis a column vector
bt =b’ % bt =[1, 2] is a row vector

C=11,2; 3, 4];
Ct=C5 % Ct = [1, 3 2 4J; Cti,j) is C(j.i)
If z and y are two vectors, we can define their inner product (also called the

scalar product or dot product) and outer product in terms of ordinary matrix
multiplication and transposition:

2] suppose abstract linear maps are more basic than matrices — but you have to have
matrices to compute.

3In this class, the word “vector” with no qualifiers will usually mean “column vector.”
If T want to refer to a row vector, I will write “row vector.”

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

x = [1; 2J;

y =13 4f;

dotxy = x'xy; % Inner product is 1x3 + 2x/ = 11
outer = xxy’; % Quter product is [3, 6;, 4, 8]

If T want to apply the inverse of a square matrix C', I can use the backslash
(solve) operator

C=1[L 2 3, 4]
b =L 2J;
z = C\b; % Computes z = [0; 0.5]. Better than z = inv(C)xb.

Most expressions that involve a matrix inverse can be rewritten in terms of
the backslash operator, and backslash is almost always preferable to the inv
command.

I can take slices of matrices using MATLAB’s colon syntax. For example,
if I write

I = eye(6);
e3 =1(:,3);

then e3 denotes e, the vector which is all zeros except for the third entry.

The costs of computations

Our first goal in any scientific computing task is to get a sufficiently accurate
answer. Our second goal is to get it fast enough®. Of course, there is a tradeoff
between the computer time and our time; and often, we can optimize both
by making wise high-level decisions about the type of algorithm we should
use, and then calling an appropriate library routine. At the same time, we
need to keep track of enough details so that we don’t spend days on end
twiddling our thumbs and waiting for a computation that should have taken
a few seconds. It is easy to goof and write slow MATLAB code. Fortunately,
MATLAB has a profiler that can help us find where our code is spending all its
time; for details, type help profile at the command line. Unfortunately,
it doesn’t always help us to know where we are spending a lot of time if we
don’t know why.

4If you really like thining about how to make things run fast enough, you might enjoy
CS 5220: Applications of Parallel Computers. I'll be teaching it in the fall.

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

The work to multiply an m x n matrix by an n X p matrix is O(mnp).
If A e R™™ and B € R™? are general (dense) MATLAB matrices, then the
work to compute A~! B using the backslash operator is O(n®+n?p)°. Because
matrix multiplication is associative, (AB)C and A(BC') are mathematically
equivalent; but they can have very different performance depending on the
matrix sizes. For example, if z,y, z € R™ are three vectors (n x 1 matrices),
then evaluating (zy”)z takes O(n?) arithmetic and storage (O(n?) arithmetic
and storage for the outer product and O(n?) arithmetic to multiply by 2).
But the equivalent expression x(y” 2) takes only O(n) arithmetic and storage:
O(n) arithmetic and one element of storage to compute the inner product,
followed by O(n) arithmetic and storage to multiply by a scalar.

Because equivalent mathematical expressions can have very different per-
formance characteristics, it is useful to remember some basic algebraic prop-
erties of simple matrix operations:

(AB)C = A(BC)
(AB)T = BT A"
(AB)™' = B4
AfT = <A71>T — (AT>71

It is also helpful to remember that some matrix operations can be written
more efficiently without forming an explicit matrix. For example, the follow-
ing codes are equivalent:

% Inefficient (O(n"2))
y = diag(s)*x; % Multiply x by a diagonal scaling matriz
z = (cxeye(n))*x; % Multiply x by cxI

% Efficient
Y = S.%X; % .x is componentwise multiplication
7 = C*X; % Can omit multiplication by an identity

In addition to poor choices of parentheses, we can get terrible performance
in MATLAB if we ignore silent costs. But we can also get surprisingly good

5The backslash operator is actually very sophisticated, and it will take advantage of any
structure it can find in your matrix. If the matrix A is triangular, MATLAB will compute
A7IB in O(n?p) time; if A is represented using MATLAB’s sparse matrix features, the cost
can be even lower.

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

performance if we play to MATLAB’s strength in vector operations®. For
example:

% Inefficient (O(n"2) data transfer operations)
results = [[;
for k = 1:n
results (k) = foo(k); % Allocates a length k+1 array, copies old data in
end

% More efficient (no silent memory costs)

results = zeros(1,n); % Pre—allocate storage
for k = 1:n

results (k) = foo(k);
end

% Most efficient if foo is wvectorized
results = foo(1:n);

People sometimes think MATLAB must be slow compared to a language
like Java or C. But for matrix computations, well-written MATLAB is often
faster than all but very carefully tuned code in a compiled language. That
is because MATLAB uses very fast libraries for linear algebra operations like
matrix multiplication and linear solves. Most of our codes in this class will
be fast to the extent that we can take advantage of these libraries.

SRecent versions of MATLAB pre-compile scripts into byte code, and the compiler has
an optimizer. Consequently, recent versions of MATLAB have better loop performance
than older versions, particularly when the loops have simple structures that the optimizer
can figure out.

