Week 2: Wednesday, Feb 1

Consider the cubic equation

$$f(x) = x^3 - 2x + c = 0.$$

Describe a general purpose strategy for finding all the real roots of this equation for a given c.

Answer: I discussed this in lecture, but I wanted to give a more complete description of it, since I think the ideas are important.

The simplest way I know to solve this problem is to organize the computation around the local minimum and maximum points for f. Setting $f'(x) = 3x^2 - 2$ to zero, we have that there are optima at $z_{\pm} = \pm \sqrt{2/3}$. The function f is strictly increasing on $(-\infty, z_{-}]$, strictly decreasing on $[z_{-}, z_{+}]$, and strictly increasing again on $[z_{+}, \infty)$. Thus, we have the following cases:

- $f(z_{-}) > f(z_{+}) > 0$: There is one real root on $(-\infty, z_{-})$.
- $f(z-) \ge 0 \ge f(z_+)$: There are three real roots, one on $(-\infty, z_-]$, one on $[z_-, z_+]$, and one on $[z_+, \infty)$. In the cases $f(z_-) = 0$ or $f(z_+) = 0$, there is actually a double root at z_- or z_+ .
- $0 > f(z_{-}) > f(z_{+})0$: There is one real root on (z_{+}, ∞) .

We can find the root between z_{-} and z_{+} (if there is one) by bisection. What about getting a finite bound for the other two intervals? If we expand f in a Taylor series about z_{-} , we have

$$f(x) = f(z_{-}) + 3z_{-}(x - z_{-})^{2} + (x - z_{-})^{3}.$$

For $x < z_-$, we have $(x - z_-)^3 < 0$, and so

$$f(x) < f(z_{-}) + 3z_{-}(x - z_{-})^{2}$$
.

In particular, this means that if f has a zero below z_- , it will be bounded from below by the smaller root of $f(z_-) + 3z_-(x-z_-)^2$, and so will lie in the interval

$$\left[z_{-}-\sqrt{\frac{-f(z_{-})}{3z_{-}}},z_{-}\right].$$

Near a double root, the left end point of this interval becomes an excellent estimate that can be used to start a Newton iteration.

Similarly, a quadratic Taylor series about z_+ provides an upper bound on the root that is greater than z_+ , assuming such a root exists.