
Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

Project 3
Due on Monday, Apr 16

1 Introduction

The Frank-Kamanetskii equations are a simple model of ignition in a com-
bustible material. The basic equations1 for the evolution of (scaled) temper-
ature in this case are

(1)
∂Θ

∂t
= ∇2Θ + λ exp

(
Θ

1 + ηΘ

)
,

subject to zero temperature boundary conditions. You may recognize that
this looks almost like the ordinary heat equation, with the exception of the
exponential term on the right-hand side that corresponds to heating from
an exothermic reaction. Such reactions generate heat, and the hotter it
gets, the faster the reaction. If the heat diffuses away sufficiently fast, the
temperature will eventually approach an equilibrium; otherwise, there is a
“thermal explosion,” and the temperature grows without bound2.

Our mission in this project is to understand the blow-up phenomenon
in the context of a one-dimensional slab geometry. In this geometry, an
equilibrium state corresponds to a solution to the differential equation

(2)
d2Θ

dz2
+ λ exp

(
Θ

1 + ηΘ

)
= 0

subject to Θ(±1) = 0. At η = 0, solutions to this equation only exist
for sufficiently small λ. This is illustrated in Figure 1, which shows the
relationship between the maximum temperature Θ0 = Θ(0) for equilibrium
solutions as a function of λ. Up to a critical parameter value (about 0.88),
there are two equilibria3; beyond that critical value, there are no equilibrium
solutions, and thermal explosion is inevitable. We would like to see how this
behavior changes as a function of η, the constant that models rate limiting
in the runaway reaction. Of course, at the same time we have a great excuse
to play with interesting numerical methods!

1Actually, I think the original Frank-Kamanetskii equations had η = 0.
2At least, the temperature grows without bound according to this equation. In practice,

effects that are not modeled in the equations come in to play – such as things actually
starting to physically explode.

3The lower-temperature equilibrium is physical — the other is unstable.
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Figure 1: Maximum equilibrium temperature versus F-K parameter λ for a
model of thermal explosion in an infinite slab (η = 0).

2 Basic computation

2.1 Discretization

Your first task is to write a code capable of reproducing Figure 1. To do
this, you will need to repeatedly solve the boundary value problem (2). In
order to solve the boundary value problem, you will need to discretize the
derivative operator; that is, approximate

d2Θ

dz2
+ λ exp

(
Θ

1 + ηΘ

)
= 0,

together with the zero boundary conditions, by

(3) (LΘ̂)i + λ exp

(
Θ̂i

1 + ηΘ̂i

)
= 0,

where Θ̂ is a vector such that Θ̂i approximates Θ(zi), where {zi} are the
mesh points.

The conventional first-course approach to discretizing the problem would
be the second-order stencil discretization of the Laplacian (as described in
the book in Chapter 4, where the model problem was described); that is,
take

(Lu)i =
ui−1 − 2ui + ui+1

h2
.
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To see how to efficiently form the L matrix in this case, I recommend looking
at the MATLAB help page for spdiags — forming this matrix (modulo
the scaling by h2) is one of the examples. If you feel like being a bit more
adventurous, I recommend using a Chebyshev collocation approximation to
the derivative, as described toward the end of Chapter 14. If you take this
approach, you may find it helpful to use Trefethen’s cheb routine:

http://people.maths.ox.ac.uk/trefethen/cheb.m

2.2 Solution strategy

The most obvious approach to producing Figure 1 is to sweep over different
values of λ, and for each value of λ to use Newton iteration in order to try to
solve for Θ̂ in (3). Sadly, it is not that easy to convince Newton to converge,
particularly as we get close to the critical value for λ; and even if we can get
Newton to converge to one equilibrium, it is unclear how we should coax it
into finding both the equilibria.

A better approach is to sweep over different values of Θ̂mid corresponding
to the point zmid = 0, and to treat λ as an unknown. That is, solve (3)
together with the equation

Θ̂mid = Θ0,

treating the components of Θ̂ and the parameter λ as unknowns. You can
iterate on this new system of equations using Newton’s method. I recommend
a continuation approach: starting at Θ0 = 0 (for which the solution is Θ̂ = 0
and λ = 0), gradually increase Θ0, at each step using the solution with the
previous value of Θ0 as a starting point for a new Newton iteration.

2.3 Deliverable

For the first part of the assignment, you should generate a MATLAB code
with the interface

% Compute theta vs lambda for a range of theta values between 0 and
% thetamax.

function [theta, lambda] = p3sweep(thetamax, eta)

The call [t,l] = p3sweep(10,0); plot(l,t) should produce something
like Figure 1. You should also make sure p3sweep works correctly for η =
0.1, 0.2, 0.3.

http://people.maths.ox.ac.uk/trefethen/cheb.m
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3 Behavior of the critical parameter

For η = 0, there is a critical value of λ (around 0.88) beyond which there is no
stable equilibrium, and blow-up is guaranteed. If we plot λ as a function of
Θ0 (flip the axes in Figure 1), then this is the place where λ has a maximum
with respect to Θ0. In the language of bifurcation theory, this is an example
of a turning point. For small values of η, this qualitative behavior remains
the same: the branch of stable equilibria disappears past a certain critical
value of λ (though for η > 0, there is a second, higher-temperature stable
equilibrium branch). Once η becomes sufficiently large, this turning point
vanishes, and there is no longer a critical value of λ.

Our goal for the second part of the assignment is to investigate the be-
havior of λcrit(η), i.e. the critical parameter viewed as a function of η.

3.1 Computing the critical parameter

Given η, a simple strategy to find λcrit(η) is this:

1. Use p3sweep to compute λ as a function of Θ0 at a set of sample values
of Θ0 in a reasonable range – say, 0 ≤ Θ0 ≤ 8.

2. Find the local maximum sample value of λ on the interior of the sampled
range. Be careful here: for larger values of η, there is likely to be no
local maximum; and even if there is, the global maximum is may be at
the edge of the sampled range (Θ0 = 8).

3. Unless you use a very large number of sample points, steps 1–2 will
only give you λcrit(η) to a couple digits of accuracy. To improve the
accuracy, fit a low-degree polynomial to the points near the (local) max
sample value — I used a quadratic. Use the maximum value of this
quadratic interpolant in order to get an improved estimate of λcrit(η)
and the corresponding value of Θ0 (call it Θcrit(η)).

You can get a visual check of the calculation above by ploting λ versus
Θ0 and marking (λcrit,Θcrit) with a big dot, for several values of η. It is
illuminating to plot the locus of (λcrit(η),Θcrit(η)) for η ranging from zero up
to the point η∗ where the turning point disappears. Take a look for yourself
— what does the plot of λ versus Θ0 look like at η∗?
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3.2 Deliverables

For the second part of the assignment, you should generate a MATLAB code
with the interface

% Use the output from p3sweep to find the critical value for lambda,
% improving the answer a bit by quadratic interpolation . If
% there is no critical value, return tcrit = [] and lcrit = [].

function [tcrit , lcrit ] = p3critical (eta)

You should also generate a short report that includes (on a single figure)
plots of Θ0 against λ for η = 0 and η = η∗, and a plot of the curve traced out
by (λcrit(η),Θcrit(η)) for 0 ≤ η ≤ η∗. Also give numbers for η∗, λcrit(η∗), and
Θcrit(η∗). Comment on the approximations that went into your computa-
tions4. How many digits do you think are probably correct, and why? Note
that I’m not asking for a formal error analysis here — experimental evidence
and convergence plots are just fine.

Notes

1. This assignment is a guided tour of some of the very basic concepts of
numerical bifurcation analysis. If you are interested in reading further,
I recommend From Equilibrium to Chaos: Practical Bifurcation and
Stability Analysis (Seydel). For a more advanced perspective, I like
the book Numerical Methods for Bifurcations of Dynamical Equilibria
(Govaerts).

2. If you do some plots, you may notice that λcrit(η) and η are functions of
Θcrit(η), and η∗ corresponds to a maximum of these functions. You may
wish to use this observation to improve the accuracy of your estimates
for η∗, λcrit(η∗), and Θcrit(η∗).

3. No explosions were created in the making of this assignment.

4I want comments on the approximations in the numerics, not in the physics. The
latter is interesting, too, but is a topic for a different course.
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