
Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

Project 1
Due on Monday, Feb 20

Consider the following simplified model of opinion formation: each person
has an expressed opinion xi which is a weighted average of an “intrinsic”
opinion si and the expressed opinions of some set of neighbors. That is, if
wij represents how much weight person i gives to the opinion of person j,
then

xi =
si +

∑
j 6=iwijxj

1 +
∑

j 6=iwij

.

Rearranging this expression slightly, we have a matrix equation

(L+ I)x = s,

where L is the so-called (directed) graph Laplacian

Lij =

{∑
k 6=iwik, i = j

−wij, otherwise.

Under this model, define φ(W, s) to be the mean opinion:

φ(W, s) =
1

n

n∑
i=1

xi.

In this assignment, we will investigate the sensitivity of the mean opinion
to small changes in the weights wij or the intrinsic opinions si. That is, we
would like a function

function [phi,Ws,ss] = phi sensitivity (W,s)

where

• W is a sparse matrix of edge weights

• s is a column vector of node “intrinsic” opinions

• phi is the mean opinion for the given graph

• Ws is a sparse matrix of partial derivatives of φ with respect to the
(nonzero) edge weights

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

• ss is a column vector of partial derivatives with respect to the intrinsic
opinions

We want efficient solutions to each of these problems. Assume that n is
fairly large (say n = 104), but that the topology of the graph is nice enough
that it is practical to factor network matrices using Matlab’s sparse direct
Gaussian elimination code. Ideally, you should look in the documentation of
sparse to see how to compute factorizations of the form LU = PAQ, where
L and U are sparse lower and upper triangular matrices and P and Q are
permutation matrices. You should be able to do one factorization, then only
ever solve sparse triangular linear systems (using backslash).

Notes

1. This project should not involve much code if you do it right. My so-
lution takes nine lines of MATLAB (not including the function proto-
type). However, this code is fairly compact because it uses Matlab’s
vector operations — I could have done the same with loops, but it
would have been longer, and it would have taken longer to run.

2. You will lose points if your code does way too much work, or if you
store something in dense form that I requested be sparse. As a point
of reference, my code takes a bit under a quarter second to process the
glinkW network (available on the class web page) on my PowerBook
laptop using MATLAB R2011a.

3. You may want to look at the Matlab help pages for lu (particularly
the form [L,U,P,Q] = lu(A)), for spdiags, for find, and for sparse.
The only other functions my code uses (apart from built-in matrix
intrinsics like backslash) are length and ones.

4. It’s easy to make minor goofs, so you should carefully check your results.
You can check your sensitivity calculations using a finite difference
approximation for the derivative; for example:

% i,j are indices of a weight to check;
% h is a step size (e.g. h = 1e−4)

Wp = W; Wp(i,j) = Wp(i,j) + h;

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

Wm = W; Wm(i,j) = Wm(i,j) − h;
[phi,Ws,ss] = phi sensitivity (W,s);
phip = phi sensitivity (Wp,s);
phim = phi sensitivity (Wm,s);
Ws ij est = (phip−phim)/2/h;
fprintf(’Ws(i,j) = %g; check vs fd = %g\n’, ...

Ws(i,j), abs(Ws ij est−Ws(i,j))/abs(Ws(i,j)));

5. If you find this application interesting, enough that you think you’d like
to see more, you might enjoy the paper by Bindel, Oren, and Kleinberg,
How Bad is Forming Your Own Opinion? (FOCS 2011).

