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Abstract

Inexpensive RGB-D cameras that give an RGB image together with depth data
have become widely available. In this paper, we use this data to build 3D point
clouds of full indoor scenes such as an office and address the task of semantic la-
beling of these 3D point clouds. We propose a graphical model that captures var-
ious features and contextual relations, including the local visual appearance and
shape cues, object co-occurence relationships and geometric relationships. With a
large number of object classes and relations, the model’s parsimony becomes im-
portant and we address that by using multiple types of edge potentials. The model
admits efficient approximate inference, and we train it using a maximum-margin
learning approach. In our experiments over a total of 52 3D scenes of homes and
offices (composed from about 550 views, having 2495 segments labeled with 27
object classes), we get a performance of 84.06% in labeling 17 object classes for
offices, and 73.38% in labeling 17 object classes for home scenes. Finally, we
applied these algorithms successfully on a mobile robot for the task of finding
objects in large cluttered rooms.1

1 Introduction
Inexpensive RGB-D sensors that augment an RGB image with depth data have recently become
widely available. At the same time, years of research on SLAM (Simultaneous Localization and
Mapping) now make it possible to reliably merge multiple RGB-D images into a single point cloud,
easily providing an approximate 3D model of a complete indoor scene (e.g., a room). In this paper,
we explore how this move from part-of-scene 2D images to full-scene 3D point clouds can improve
the richness of models for object labeling.
In the past, a significant amount of work has been done in semantic labeling of 2D images. However,
a lot of valuable information about the shape and geometric layout of objects is lost when a 2D
image is formed from the corresponding 3D world. A classifier that has access to a full 3D model,
can access important geometric properties in addition to the local shape and appearance of an object.
For example, many objects occur in characteristic relative geometric configurations (e.g., a monitor
is almost always on a table), and many objects consist of visually distinct parts that occur in a
certain relative configuration. More generally, a 3D model makes it easy to reason about a variety
of properties, which are based on 3D distances, volume and local convexity.
Some recent works attempt to first infer the geometric layout from 2D images for improving the
object detection [12, 14, 28]. However, such a geometric layout is not accurate enough to give
significant improvement. Other recent work [35] considers labeling a scene using a single 3D view
(i.e., a 2.5D representation). In our work, we first use SLAM in order to compose multiple views
from a Microsoft Kinect RGB-D sensor together into one 3D point cloud, providing each RGB
pixel with an absolute 3D location in the scene. We then (over-)segment the scene and predict
semantic labels for each segment (see Fig. 1). We predict not only coarse classes like in [1, 35] (i.e.,

1This work was first presented at [16].
∗ indicates equal contribution.
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Figure 1: Office scene (top) and Home (bottom) scene with the corresponding label coloring above the images.
The left-most is the original point cloud, the middle is the ground truth labeling and the right most is the point
cloud with predicted labels.

wall, ground, ceiling, building), but also label individual objects (e.g., printer, keyboard, mouse).
Furthermore, we model rich relational information beyond an associative coupling of labels [1].
In this paper, we propose and evaluate the first model and learning algorithm for scene understand-
ing that exploits rich relational information derived from the full-scene 3D point cloud for object
labeling. In particular, we propose a graphical model that naturally captures the geometric re-
lationships of a 3D scene. Each 3D segment is associated with a node, and pairwise potentials
model the relationships between segments (e.g., co-planarity, convexity, visual similarity, object oc-
currences and proximity). The model admits efficient approximate inference [25], and we show
that it can be trained using a maximum-margin approach [7, 31, 34] that globally minimizes an
upper bound on the training loss. We model both associative and non-associative coupling of la-
bels. With a large number of object classes, the model’s parsimony becomes important. Some
features are better indicators of label similarity, while other features are better indicators of non-
associative relations such as geometric arrangement (e.g., “on top of,” “in front of”). We therefore
introduce parsimony in the model by using appropriate clique potentials rather than using general
clique potentials. Our model is highly flexible and our software is available as a ROS package at:
http://pr.cs.cornell.edu/sceneunderstanding

To empirically evaluate our model and algorithms, we perform several experiments over a total of
52 scenes of two types: offices and homes. These scenes were built from about 550 views from
the Kinect sensor, and they are also available for public use. We consider labeling each segment
(from a total of about 50 segments per scene) into 27 classes (17 for offices and 17 for homes,
with 7 classes in common). Our experiments show that our method, which captures several local
cues and contextual properties, achieves an overall performance of 84.06% on office scenes and
73.38% on home scenes. We also consider the problem of labeling 3D segments with multiple
attributes meaningful to robotics context (such as small objects that can be manipulated, furniture,
etc.). Finally, we successfully applied these algorithms on mobile robots for the task of finding
objects in cluttered office scenes.

2 Related Work
There is a huge body of work in the area of scene understanding and object recognition from 2D im-
ages. Previous works focus on several different aspects: designing good local features such as HOG
(histogram-of-gradients) [5] and bag of words [4], and designing good global (context) features such
as GIST features [33]. However, these approaches do not consider the relative arrangement of the
parts of the object or of multiple objects with respect to each other. A number of works propose
models that explicitly capture the relations between different parts of the object e.g., Pedro et al.’s
part-based models [6], and between different objects in 2D images [13, 14]. However, a lot of valu-
able information about the shape and geometric layout of objects is lost when a 2D image is formed
from the corresponding 3D world. In some recent works, 3D layout or depths have been used for
improving object detection (e.g., [11, 12, 14, 20, 21, 22, 27, 28]). Here a rough 3D scene geometry
(e.g., main surfaces in the scene) is inferred from a single 2D image or a stereo video stream, respec-
tively. However, the estimated geometry is not accurate enough to give significant improvements.
With 3D data, we can more precisely determine the shape, size and geometric orientation of the
objects, and several other properties and therefore capture much stronger context.
The recent availability of synchronized videos of both color and depth obtained from RGB-D
(Kinect-style) depth cameras, shifted the focus to making use of both visual as well as shape features
for object detection [9, 18, 19, 24, 26] and 3D segmentation (e.g., [3]). These methods demonstrate
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that augmenting visual features with 3D information can enhance object detection in cluttered, real-
world environments. However, these works do not make use of the contextual relationships between
various objects which have been shown to be useful for tasks such as object detection and scene
understanding in 2D images. Our goal is to perform semantic labeling of indoor scenes by modeling
and learning several contextual relationships.
There is also some recent work in labeling outdoor scenes obtained from LIDAR data into a few ge-
ometric classes (e.g., ground, building, trees, vegetation, etc.). [8, 30] capture context by designing
node features and [36] do so by stacking layers of classifiers; however these methods do not model
the correlation between the labels. Some of these works model some contextual relationships in the
learning model itself. For example, [1, 23] use associative Markov networks in order to favor similar
labels for nodes in the cliques. However, many relative features between objects are not associative
in nature. For example, the relationship “on top of” does not hold in between two ground segments,
i.e., a ground segment cannot be “on top of” another ground segment. Therefore, using an associa-
tive Markov network is very restrictive for our problem. All of these works [1, 23, 29, 30, 36] were
designed for outdoor scenes with LIDAR data (without RGB values) and therefore would not apply
directly to RGB-D data in indoor environments. Furthermore, these methods only consider very few
geometric classes (between three to five classes) in outdoor environments, whereas we consider a
large number of object classes for labeling the indoor RGB-D data.
The most related work to ours is [35], where they label the planar patches in a point-cloud of an
indoor scene with four geometric labels (walls, floors, ceilings, clutter). They use a CRF to model
geometrical relationships such as orthogonal, parallel, adjacent, and coplanar. The learning method
for estimating the parameters was based on maximizing the pseudo-likelihood resulting in a sub-
optimal learning algorithm. In comparison, our basic representation is a 3D segment (as compared
to planar patches) and we consider a much larger number of classes (beyond just the geometric
classes). We also capture a much richer set of relationships between pairs of objects, and use a
principled max-margin learning method to learn the parameters of our model.

3 Approach
We now outline our approach, including the model, its inference methods, and the learning algo-
rithm. Our input is multiple Kinect RGB-D images of a scene (i.e., a room) stitched into a single 3D
point cloud using RGBDSLAM.2 Each such point cloud is then over-segmented based on smooth-
ness (i.e., difference in the local surface normals) and continuity of surfaces (i.e., distance between
the points). These segments are the atomic units in our model. Our goal is to label each of them.
Before getting into the technical details of the model, the following outlines the properties we aim
to capture in our model:
Visual appearance. The reasonable success of object detection in 2D images shows that visual
appearance is a good indicator for labeling scenes. We therefore model the local color, texture,
gradients of intensities, etc. for predicting the labels. In addition, we also model the property that if
nearby segments are similar in visual appearance, they are more likely to belong to the same object.
Local shape and geometry. Objects have characteristic shapes—for example, a table is horizontal,
a monitor is vertical, a keyboard is uneven, and a sofa is usually smoothly curved. Furthermore,
parts of an object often form a convex shape. We compute 3D shape features to capture this.
Geometrical context. Many sets of objects occur in characteristic relative geometric configurations.
For example, a monitor is always on-top-of a table, chairs are usually found near tables, a keyboard
is in-front-of a monitor. This means that our model needs to capture non-associative relationships
(i.e., that neighboring segments differ in their labels in specific patterns).

Note the examples given above are just illustrative. For any particular practical application, there
will likely be other properties that could also be included. As demonstrated in the following section,
our model is flexible enough to include a wide range of features.
3.1 Model Formulation
We model the three-dimensional structure of a scene using a model isomorphic to a Markov Ran-
dom Field with log-linear node and pairwise edge potentials. Given a segmented point cloud
x = (x1, ..., xN ) consisting of segments xi, we aim to predict a labeling y = (y1, ..., yN ) for
the segments. Each segment label yi is itself a vector of K binary class labels yi = (y1i , ..., y

K
i ),

with each yki ∈ {0, 1} indicating whether a segment i is a member of class k. Note that multiple yki
can be 1 for each segment (e.g., a segment can be both a “chair” and a “movable object”). We use

2http://openslam.org/rgbdslam.html
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Node features for segment i.
Description Count
Visual Appearance 48
N1. Histogram of HSV color values 14
N2. Average HSV color values 3
N3. Average of HOG features of the blocks in im-
age spanned by the points of a segment

31

Local Shape and Geometry 8
N4. linearness (λi0 - λi1), planarness (λi1 - λi2) 2
N5. Scatter: λi0 1
N6. Vertical component of the normal: n̂iz 1
N7. Vertical position of centroid: ciz 1
N8. Vert. and Hor. extent of bounding box 2
N9. Dist. from the scene boundary (Fig. 2) 1

Edge features for (segment i, segment j).
Description Count
Visual Appearance (associative) 3
E1. Difference of avg HSV color values 3
Local Shape and Geometry (associative) 2
E2. Coplanarity and convexity (Fig. 2) 2
Geometric context (non-associative) 6
E3. Horizontal distance b/w centroids. 1
E4. Vertical Displacement b/w centroids: (ciz − cjz) 1
E5. Angle between normals (Dot product): n̂i · n̂j 1
E6. Diff. in angle with vert.: cos−1(niz) - cos−1(njz) 1
E8. Dist. between closest points:
minu∈si,v∈sj

d(u, v) (Fig. 2)
1

E8. rel. position from camera (in front of/behind). (Fig. 2) 1
Table 1: Node and edge features.

location above ground, and its shape. Some features capture spatial location of an object in the scene
(e.g., N9).
We connect two segments (nodes) i and j by an edge if there exists a point in segment i and a point
in segment j which are less than context range distance apart. This captures the closest distance
between two segments (as compared to centroid distance between the segments)—we study the
effect of context range more in Section 4. The edge features φt(i, j) (Table 1-right) consist of
associative features (E1-E2) based on visual appearance and local shape, as well as non-associative
features (E3-E8) that capture the tendencies of two objects to occur in certain configurations.
Note that our features are insensitive to horizontal translation and rotation of the camera. However,
our features place a lot of emphasis on the vertical direction because gravity influences the shape
and relative positions of objects to a large extent.
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3.2.1 Computing Predictions
Solving the argmax in Eq. (1) for the discriminant function in Eq. (2) is NP hard. However, its
equivalent formulation as the following mixed-integer program has a linear relaxation with several
desirable properties.
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solutions (i.e. yl
i only take values {0, 0.5, 1} at the solution) [10]. Furthermore, this relaxation can

also be solved as a quadratic pseudo-Boolean optimization problem using a graph-cut method [25],
which is orders of magnitude faster than using a general purpose LP solver (i.e., 10 sec for labeling
a typical scene in our experiments). Therefore, we refer to the solution of this relaxation as ŷcut.
The relaxation solution ŷcut has an interesting property called Persistence [2, 10]. Persistence says
that any segment for which the value of yl

i is integral in ŷcut (i.e. does not take value 0.5) is labeled
just like it would be in the optimal mixed-integer solution.
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i is integral in ŷcut (i.e. does not take value 0.5) is labeled
just like it would be in the optimal mixed-integer solution.
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from above with the additional constraint ∀i :
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4http://www.tfinley.net/software/pyglpk/readme.html
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Figure 2: Illustration of a few features. (Left) Features N11 and E9. Segment i is infront of segment j if
rhi < rhj. (Middle) Two connected segment i and j are form a convex shape if (ri − rj).n̂i ≥ 0 and
(rj − ri).n̂j ≥ 0. (Right) Illustrating feature E8.

such multi-labelings in our attribute experiments where each segment can have multiple attributes,
but not in segment labeling experiments where each segment can have only one label).
For a segmented point cloud x, the prediction ŷ is computed as the argmax of a discriminant function
fw(x,y) that is parameterized by a vector of weights w.

ŷ = argmax
y

fw(x,y) (1)

The discriminant function captures the dependencies between segment labels as defined by an undi-
rected graph (V, E) of vertices V = {1, ..., N} and edges E ⊆ V × V . We describe in Section 3.2
how this graph is derived from the spatial proximity of the segments. Given (V, E), we define the fol-
lowing discriminant function based on individual segment features φn(i) and edge features φt(i, j)
as further described below.

fw(y,x) =
∑

i∈V

K∑

k=1

yki
[
wkn · φn(i)

]
+
∑

(i,j)∈E

∑

Tt∈T

∑

(l,k)∈Tt

yliy
k
j

[
wlkt · φt(i, j)

]
(2)

The node feature map φn(i) describes segment i through a vector of features, and there is one
weight vector for each of the K classes. Examples of such features are the ones capturing local
visual appearance, shape and geometry. The edge feature maps φt(i, j) describe the relationship
between segments i and j. Examples of edge features are the ones capturing similarity in visual
appearance and geometric context.3 There may be multiple types t of edge feature maps φt(i, j),
and each type has a graph over the K classes with edges Tt. If Tt contains an edge between classes
l and k, then this feature map and a weight vector wlkt is used to model the dependencies between
classes l and k. If the edge is not present in Tt, then φt(i, j) is not used.
We say that a type t of edge features is modeled by an associative edge potential if Tt = {(k, k)|∀k =
1..K}. And it is modeled by an non-associative edge potential if Tt = {(l, k)|∀l, k = 1..K}.
Finally, it is modeled by an object-associative edge potential if Tt = {(l, k)|∃object, l, k ∈
parts(object)}.
Parsimonious model. In our experiments we distinguished between two types of edge feature
maps—“object-associative” features φoa(i, j) used between classes that are parts of the same object
(e.g., “chair base”, “chair back” and “chair back rest”), and “non-associative” features φna(i, j) that
are used between any pair of classes. Examples of features in the object-associative feature map
φoa(i, j) include similarity in appearance, co-planarity, and convexity—i.e., features that indicate
whether two adjacent segments belong to the same class or object. A key reason for distinguishing
between object-associative and non-associate features is parsimony of the model. In this parsimo-
nious model (referred to as svm mrf parsimon), we model object associative features using object-
associative edge potentials and non-associative features as non-associative edge potentials. As not
all edge features are “non-associative”, we avoid learning weight vectors for relationships which do
not exist. Note that |Tna| >> |Toa| since, in practice, the number of parts of an objects is much less
than K. Due to this, the model we learn with both type of edge features will have much lesser number
of parameters compared to a model learnt with all edge features as “non-associative” features.
3.2 Features
Table 1 summarizes the features used in our experiments. λi0, λi1 and λi2 are the 3 eigen-values
of the scatter matrix computed from the points of segment i in decreasing order. ci is the centroid
of segment i. ri is the ray vector to the centroid of segment i from the position camera in which
it was captured. rhi is the projection of ri on horizontal plane. n̂i is the unit normal of segment i
which points towards the camera (ri.n̂i < 0). The node features φn(i) consist of visual appearance
features based on histogram of HSV values and the histogram of gradients (HOG), as well as local
shape and geometry features that capture properties such as how planar a segment is, its absolute

3Even though it is not represented in the notation, note that both the node feature map φn(i) and the edge
feature maps φt(i, j) can compute their features based on the full x, not just xi and xj .
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Local Shape and Geometry (associative) 2
E2. Coplanarity and convexity (Fig. 2) 2
Geometric context (non-associative) 6
E3. Horizontal distance b/w centroids. 1
E4. Vertical Displacement b/w centroids: (ciz − cjz) 1
E5. Angle between normals (Dot product): n̂i · n̂j 1
E6. Diff. in angle with vert.: cos−1(niz) - cos−1(njz) 1
E8. Dist. between closest points:
minu∈si,v∈sj d(u, v) (Fig. 2)

1

E8. rel. position from camera (in front of/behind). (Fig. 2) 1
Table 1: Node and edge features.

location above ground, and its shape. Some features capture spatial location of an object in the scene
(e.g., N9).
We connect two segments (nodes) i and j by an edge if there exists a point in segment i and a point
in segment j which are less than context range distance apart. This captures the closest distance
between two segments (as compared to centroid distance between the segments)—we study the
effect of context range more in Section 4. The edge features φt(i, j) (Table 1-right) consist of
associative features (E1-E2) based on visual appearance and local shape, as well as non-associative
features (E3-E8) that capture the tendencies of two objects to occur in certain configurations.
Note that our features are insensitive to horizontal translation and rotation of the camera. However,
our features place a lot of emphasis on the vertical direction because gravity influences the shape
and relative positions of objects to a large extent.
3.2.1 Computing Predictions
Solving the argmax in Eq. (1) for the discriminant function in Eq. (2) is NP hard. However, its
equivalent formulation as the following mixed-integer program has a linear relaxation with several
desirable properties.

ŷ = argmax
y

max
z

∑

i∈V

K∑

k=1

yki
[
wkn · φn(i)

]
+
∑

(i,j)∈E

∑

Tt∈T

∑

(l,k)∈Tt

zlkij
[
wlkt · φt(i, j)

]
(3)

∀i, j, l, k : zlkij ≤ yli, zlkij ≤ ykj , yli + ykj ≤ zlkij + 1, zlkij , y
l
i ∈ {0, 1} (4)

Note that the products yliy
k
j have been replaced by auxiliary variables zlkij . Relaxing the variables zlkij

and yli to the interval [0, 1] leads to a linear program that can be shown to always have half-integral
solutions (i.e. yli only take values {0, 0.5, 1} at the solution) [10]. Furthermore, this relaxation can
also be solved as a quadratic pseudo-Boolean optimization problem using a graph-cut method [25],
which is orders of magnitude faster than using a general purpose LP solver (i.e., 10 sec for labeling
a typical scene in our experiments). Therefore, we refer to the solution of this relaxation as ŷcut.
The relaxation solution ŷcut has an interesting property called Persistence [2, 10]. Persistence says
that any segment for which the value of yli is integral in ŷcut (i.e. does not take value 0.5) is labeled
just like it would be in the optimal mixed-integer solution.
Since every segment in our experiments is in exactly one class, we also consider the linear relaxation
from above with the additional constraint ∀i :

∑K
j=1 y

j
i = 1. This problem can no longer be solved

via graph cuts and is not half-integral. We refer to its solution as ŷLP . Computing ŷLP for a
scene takes 11 minutes on average4. Finally, we can also compute the exact mixed integer solution
including the additional constraint ∀i :

∑K
j=1 y

j
i = 1 using a general-purpose MIP solver4. We set

a time limit of 30 minutes for the MIP solver. This takes 18 minutes on average for a scene. All
runtimes are for single CPU implementations using 17 classes.
When using this algorithm in practice on new scenes (e.g., during our robotic experiments), objects
other than the 27 objects we modeled might be present (e.g., coffee-mugs). So we relax the constraint
∀i :

∑K
j=1 y

j
i = 1 to ∀i :

∑K
j=1 y

j
i ≤ 1. This increases precision greatly at the cost of some drop in

recall. Also, this relaxed MIP takes lesser time to solve.

3.2.2 Learning Algorithm
We take a large-margin approach to learning the parameter vector w of Eq. (2) from labeled training
examples (x1,y1), ..., (xn,yn) [31, 32, 34]. Compared to Conditional Random Field training [17]

4http://www.tfinley.net/software/pyglpk/readme.html
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using maximum likelihood, this has the advantage that the partition function normalizing Eq. (2)
does not need to be computed, and that the training problem can be formulated as a convex program
for which efficient algorithms exist.
Our method optimizes a regularized upper bound on the training error

R(h) =
1

n

n∑

j=1

∆(yj , ŷj), (5)

where ŷj is the optimal solution of Eq. (1) and ∆(y, ŷ) =
∑N
i=1

∑K
k=1 |yki − ŷki |. To simplify

notation, note that Eq. (3) can be equivalently written as wTΨ(x,y) by appropriately stacking the
wkn and wlkt into w and the yki φn(k) and zlkij φt(l, k) into Ψ(x,y), where each zlkij is consistent with
Eq. (4) given y. Training can then be formulated as the following convex quadratic program [15]:

min
w,ξ

1

2
wTw + Cξ (6)

s.t. ∀ȳ1, ..., ȳn ∈ {0, 0.5, 1}N ·K :
1

n
wT

n∑

i=1

[Ψ(xi,yi)−Ψ(xi, ȳi)] ≥ ∆(yi, ȳi)− ξ

While the number of constraints in this quadratic program is exponential in n, N , and K, it can
nevertheless be solved efficiently using the cutting-plane algorithm for training structural SVMs
[15]. The algorithm maintains a working set of constraints, and it can be shown to provide an ε-
accurate solution after adding at most O(R2C/ε) constraints (ignoring log terms). The algorithm
merely need access to an efficient method for computing

ȳi = argmax
y∈{0,0.5,1}N·K

[
wTΨ(xi,y) + ∆(yi,y)

]
. (7)

Due to the structure of ∆(., .), this problem is identical to the relaxed prediction problem in Eqs. (3)-
(4) and can be solved efficiently using graph cuts.
Since our training problem is an overgenerating formulation as defined in [7], the value of ξ at the
solution is an upper bound on the training error in Eq. (5). Furthermore, [7] observed empirically
that the relaxed prediction ŷcut after training w via Eq. (6) is typically largely integral, meaning
that most labels yki of the relaxed solution are the same as the optimal mixed-integer solution due to
persistence. We made the same observation in our experiments as well.

4 Experiments
4.1 Data
We consider labeling object segments in full 3D scene (as compared to 2.5D data from a single
view). For this purpose, we collected data of 24 office and 28 home scenes (composed from about
550 views). Each scene was reconstructed from about 8-9 RGB-D views from a Kinect sensor and
contains about one million colored points.
We first over-segment the 3D scene (as described earlier) to obtain the atomic units of our rep-
resentation. For training, we manually labeled the segments, and we selected the labels which
were present in a minimum of 5 scenes in the dataset. Specifically, the office labels are: {wall,
floor, tableTop, tableDrawer, tableLeg, chairBackRest, chairBase, chairBack, monitor, printerFront,
printerSide keyboard, cpuTop, cpuFront, cpuSide, book, paper }, and the home labels are: {wall,
floor, tableTop, tableDrawer, tableLeg, chairBackRest, chairBase, sofaBase, sofaArm, sofaBack-
Rest, bed, bedSide, quilt, pillow, shelfRack, laptop, book }. This gave us a total of 1108 labeled
segments in the office scenes and 1387 segments in the home scenes. Often one object may be di-
vided into multiple segments because of over-segmentation. We have made this data available at:
http://pr.cs.cornell.edu/sceneunderstanding/data/data.php.
4.2 Results
Table 2 shows the results, performed using 4-fold cross-validation and averaging performance across
the folds for the models trained separately on home and office datasets. We use both the macro and
micro averaging to aggregate precision and recall over various classes. Since our algorithm can
only predict one label for each segment, micro precision and recall are same as the percentage of
correctly classified segments. Macro precision and recall are respectively the averages of precision
and recall for all classes. The optimal C value is determined separately for each of the algorithms
by cross-validation.
Figure 1 shows the original point cloud, ground-truth and predicted labels for one office (top) and
one home scene (bottom). We see that on majority of the classes we are able to predict the correct
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Table 2: Learning experiment statistics. The table shows average micro precision/recall, and average macro
precision and recall for home and office scenes.

Office Scenes Home Scenes
micro macro micro macro

features algorithm P/R Precision Recall P/R Precision Recall
None chance 26.23 5.88 5.88 29.38 5.88 5.88
Image Only svm node only 46.67 35.73 31.67 38.00 15.03 14.50
Shape Only svm node only 75.36 64.56 60.88 56.25 35.90 36.52
Image+Shape svm node only 77.97 69.44 66.23 56.50 37.18 34.73
Image+Shape & context single frames 84.32 77.84 68.12 69.13 47.84 43.62
Image+Shape & context svm mrf assoc 75.94 63.89 61.79 62.50 44.65 38.34
Image+Shape & context svm mrf nonassoc 81.45 76.79 70.07 72.38 57.82 53.62
Image+Shape & context svm mrf parsimon 84.06 80.52 72.64 73.38 56.81 54.80

label. It makes mistakes in some cases and these usually tend to be reasonable, such as a pillow
getting confused with the bed, and table-top getting confused with the shelf-rack.
One of our goals is to study the effect of various factors, and therefore we compared different
versions of the algorithms with various settings. We discuss them in the following.
Do Image and Point-Cloud Features Capture Complimentary Information? The RGB-D data
contains both image and depth information, and enables us to compute a wide variety of features.
In this experiment, we compare the two kinds of features: Image (RGB) and Shape (Point Cloud)
features. To show the effect of the features independent of the effect of context, we only use the
node potentials from our model, referred to as svm node only in Table 2. The svm node only model
is equivalent to the multi-class SVM formulation [15]. Table 2 shows that Shape features are more
effective compared to the Image, and the combination works better on both precision and recall.
This indicates that the two types of features offer complementary information and their combination
is better for our classification task.
How Important is Context? Using our svm mrf parsimon model as described in Section 3.1,
we show significant improvements in the performance over using svm node only model on both
datasets. In office scenes, the micro precision increased by 6.09% over the best svm node only
model that does not use any context. In home scenes the increase is much higher, 16.88%.
The type of contextual relations we capture depend on the type of edge potentials we model. To
study this, we compared our method with models using only associative or only non-associative
edge potentials referred to as svm mrf assoc and svm mrf nonassoc respectively. We observed that
modeling all edge features using associative potentials is poor compared to our full model. In fact,
using only associative potentials showed a drop in performance compared to svm nodeonly model
on the office dataset. This indicates it is important to capture the relations between regions having
different labels. Our svm mrf non assoc model does so, by modeling all edge features using non-
associative potentials, which can favor or disfavor labels of different classes for nearby segments.
It gives higher precision and recall compared to svm nodeonly and svm mrf assoc. This shows that
modeling using non-associative potentials is a better choice for our labeling problem.
However, not all the edge features are non-associative in nature, modeling them using only non-
associative potentials could be an overkill (each non-associative feature adds K2 more parameters
to be learnt). Therefore using our svm mrf parsimon model to model these relations achieves higher
performance in both datasets.

Figure 3: Effect of context range on
precision (=recall here).

How Large should the Context Range be? Context rela-
tionships of different objects can be meaningful for different
spatial distances. This range may vary depending on the en-
vironment as well. For example, in an office, keyboard and
monitor go together, but they may have little relation with a
sofa that is slightly farther away. In a house, sofa and table
may go together even if they are farther away.
In order to study this, we compared our svm mrf parsimon
with varying context range for determining the neighborhood
(see Figure 3 for average micro precision vs range plot). Note
that the context range is determined from the boundary of one
segment to the boundary of the other, and hence it is somewhat independent of the size of the object.
We note that increasing the context range increases the performance to some level, and then it drops
slightly. We attribute this to the fact that increasing the context range can connect irrelevant objects
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with an edge, and with limited training data, spurious relationships may be learned. We observe that
the optimal context range for office scenes is around 0.3 meters and 0.6 meters for home scenes.
How does a Full 3D Model Compare to a 2.5D Model? In Table 2, we compare the performance of
our full model with a model that was trained and tested on single views of the same scenes. During
the comparison, the training folds were consistent with other experiments, however the segmentation
of the point clouds was different (because each point cloud is from a single view). This makes the
micro precision values meaningless because the distribution of labels is not same for the two cases.
In particular, many large object in scenes (e.g., wall, ground) get split up into multiple segments in
single views. We observed that the macro precision and recall are higher when multiple views are
combined to form the scene. We attribute the improvement in macro precision and recall to the fact
that larger scenes have more context, and models are more complete because of multiple views.
What is the effect of the inference method? The results for svm mrf algorithms Table 2 were
generated using the MIP solver. We observed that the MIP solver is typically 2-3% more accurate
than the LP solver. The graph-cut algorithm however, gives a higher precision and lower recall on
both datasets. For example, on office data, the graphcut inference for our svm mrf parsimon gave
a micro precision of 90.25 and micro recall of 61.74. Here, the micro precision and recall are not
same as some of the segments might not get any label. Since it is orders of magnitude faster, it is
ideal for realtime robotic applications.
4.3 Robotic experiments

Figure 4: Cornell’s POLAR robot using our
classifier for detecting a keyboard in a clut-
tered room.

The ability to label segments is very useful for robotics
applications, for example, in detecting objects (so that
a robot can find/retrieve an object on request) or for
other robotic tasks. We therefore performed two relevant
robotic experiments.
Attribute Learning: In some robotic tasks, such as
robotic grasping, it is not important to know the exact
object category, but just knowing a few attributes of an
object may be useful. For example, if a robot has to clean
a floor, it would help if it knows which objects it can move
and which it cannot. If it has to place an object, it should
place them on horizontal surfaces, preferably where hu-
mans do not sit. With this motivation we have designed 8 attributes, each for the home and office
scenes, giving a total of 10 unique attributes in total, comprised of: wall, floor, flat-horizontal-
surfaces, furniture, fabric, heavy, seating-areas, small-objects, table-top-objects, electronics. Note
that each segment in the point cloud can have multiple attributes and therefore we can learn these
attributes using our model which naturally allows multiple labels per segment. We compute the
precision and recall over the attributes by counting how many attributes were correctly inferred. In
home scenes we obtained a precision of 83.12% and 70.03% recall, and in the office scenes we
obtain 87.92% precision and 71.93% recall.
Object Detection: We finally use our algorithm on two mobile robots, mounted with Kinects, for
completing the goal of finding objects such as a keyboard in cluttered office scenes. The following
video shows our robot successfully finding a keyboard in an office: http://pr.cs.cornell.
edu/sceneunderstanding/

In conclusion, we have proposed and evaluated the first model and learning algorithm for scene un-
derstanding that exploits rich relational information from the full-scene 3D point cloud. We applied
this technique to object labeling problem, and studied affects of various factors on a large dataset.
Our robotic application shows that such inexpensive RGB-D sensors can be extremely useful for
scene understanding for robots.
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