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Abstract. The state of the art in Hex playing programs around 2002
is that computers can play perfectly on positions up to board size 6 × 6
and are on par with the best human players on board sizes up to about
9 × 9. This report describes currently used and proposed approaches to
game tree search and heuristic evaluation functions.

1 Introduction

For an excellent introduction to the game of Hex and its strategy, see Browne’s
book [Bro00]. Introductory articles on Hex appeared in Scientific American by
Gardner [Gar59] and Stewart [Ste00]. Proofs of the no-draw property of Hex
are included in articles by Gale [Gal86] and Beck [BBC69]. The PSPACE-
completeness of a generalized version of Hex was proved by Even and Tar-
jan [ET76]; the proof for Hex itself was supplied by Reisch [Rei81].

The algorithmic approaches to playing Hex described in this report can be
summarized as follows:

Virtual connections are used in Vadim Anshelevich’s program Hexy [Ans00];

Decomposition patterns are used by Jing Yang to prove some 7×7 and 8×8
opening values [YLP01,YLP02a,YLP02b];

Pattern search is based on Yang’s method and was tested but not yet used in
Jack van Rijswijck’s program Queenbee [Rij00];

Network flow models have been proposed in several forms, notably in Hexy
where an electric network is simulated;

Graph distance is used in Queenbee;

Y-Reduction was suggested by Steven Meyers based on observations by Craig
Schensted [Mey02].

The first three methods are explained in Section 2, while Section 3 describes
the network flow and two-distance methods. The Y reduction approach is pre-
sented in Section 4. Appendix A includes some background on the graph repre-
sentation of Hex.



2 Search

Neither virtual connections nor decomposition patterns are themselves game tree
search methods. Both methods use local patterns of proven connections, building
up new patterns from smaller ones. A variant of decomposition patterns using
global patterns is used as a safe game tree search enhancement in pattern search.

2.1 Virtual Connections

Virtual connections are local patterns that guarantee a connection. There are
two types of virtual connections: weak and strong. A weak connection, built by
the And rule, is a guaranteed win providing the winning player plays first. A
strong connection, built with the Or rule, is a win no matter who plays first.
Each connection has a carrier, which is the set of cells required to be empty for
the connection to work.

The And rule is depicted in Figure 1-I. It establishes a weak connection
between p and q provided that the intermediate node m is empty and there are
strong connections between p and m and between m and q. The connection can
be made by playing at m. The And rule requires the two carriers not to overlap;
the carrier of the resulting weak connection is the union of these two carriers
plus the cell m.

Figure 1-II shows the application of the Or rule. A strong connection between
p and q exists if there are two or more weak connections between p and q,
provided that the carriers of these connections have an empty total intersection.
This ensures that the opponent cannot block all weak connections at once; the
connection can then be secured by strengthening one of the unaffected weak
connections. The carrier of the resulting strong connection is the union of the
carriers of the weak connections.
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I: And rule

two strong connections form a weak one

II: Or rule

several weak connections form a strong one

Fig. 1. The And rule and the Or rule

One drawback of virtual connections is that they are incomplete, in the sense
that there are examples of positions which cannot be proved with the And-Or



rules. Figure 2 gives an example, based on one given in [Ans00]. The position
is a weak virtual connection between p and q, where m is a winning move. The
virtual connection method would aim to prove the connection by finding strong
virtual connections between p and m and between m and q, which fails in this
case because there is no strong virtual connection betweem p and m.1 The same
story goes for the only other winning move, the symmetrically equivalent n.
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Fig. 2. A weak virtual connection that cannot be proved with the And-Or rules

The reason that the virtual connection method cannot prove this position is
that the And rule contains the implicit assumption that the winning connection
is going to use the intermediate point m. In this case, play proceeds with the
opponnent being forced to occupy r. The unique winning reply is n. If the oppo-
nent then plays s, the connection can be established but it does not include node
m. This violates the hidden assumption of the And rule, which is the reason why
it cannot be discovered by virtual connection search.

2.2 Decomposition Patterns

Decomposition patters are quite similar to virtual connections; they, too, are
built up from smaller patterns and ensure a connection between two groups
of pieces with a pattern of cells that need to be empty for this connection to
work. Figure 3 shows an example, where groups b1 and b2 have a guaranteed
connection. The connection uses the smaller pattern A which connects a1 to a2.
The recipe for the connection between a and b is as follows:

– if the opponent plays at one of [1, 3, 4, 7, 8], then reply at 2, and use pattern
A between 2 and b2;

– if the opponent plays at one of [2, 5, 6], then reply at 4, and use pattern A

between b1 and 4 and pattern A between 4 and b2.

One important difference between virtual connections and decomposition
patterns is that the latter can contain non-empty cells. An example is shown
in Figure 4. The black cell c1 in the middle is connected to the group c2 on the
right using the group of two cells on the left.

1 Strictly speaking there is a strong connection between p andm, but it necessarily uses
all of the empty nodes, and thus it will always overlap with any strong connection
between m and q.
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Fig. 4. Pattern C contains nonempty cells

Decomposition patterns can any Hex position. The decomposition patterns
are remarkably efficient, enabling Jing Yang to prove some 7× 7 opening moves
using just a few hundred patterns where a game tree search would need trillions
of nodes. Unfortunately no automated algorithm for building up an efficient
library of decomposition patterns has been devised yet; Yang’s proofs are built
by hand and subsequently checked by computer.

2.3 Pattern Search

Pattern search is inspired by decomposition patterns, but it uses global patterns
instead of local ones. It is an enhancement of game tree search. Figure 5 shows
a board position where White to move is lost. The loss only depends on the cells
marked ‘×’: even if White were to occupy all the unmarked cells on the board,
Black would still win. The collection of ×-cells is the threat pattern that proves
the loss.

If White plays as in Figure 5-II, the resulting position is a win for Black.
The threat pattern indicated in the diagram is all that Black needs for the win,
and therefore it proves that all unmarked cells in 5-II were also losing moves
for White in the previous position. It thus refutes 15 additional moves at once,
improving the standard game tree search in which each of those moves would
have to be refuted independently.
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I: White to move loses II: Black to move wins

Fig. 5. Only the cells marked ‘×’ are relevant

Formally, a collection Ψ of empty cells in a Hex position P is a threat pattern
if the result of the game is unaltered even when the losing side occupies all the
empty cells not in Ψ . A threat pattern is not unique to a position, since adding
an empty cell to a threat pattern always creates another valid threat pattern.
There exists a threat pattern in every position, since the pattern that consist of
all the empty cells is always trivially valid.

In a position where the game is over, the threat pattern is the empty set. In
any other position P a pattern can be calculated recursively:

– if there is a winning move m, then P is a win and the threat pattern consists
of m along with the losing threat pattern of the resulting position;

– if there is no winning move, then there is a collection of winning threat
patterns for the opponent that have an empty total intersection, and the
union of these patterns forms the losing threat pattern for P .

These two pattern rules are analogous to the And and Or rules of virtual con-
nections.

2.4 Decomposition pattern search

Threat patterns combine the advantages of being automated and complete, but
they are less efficient because the patterns are not local. This is not a problem
in a winning position, since only one winning move needs to be tried. But it is
a problem in a losing position such as the one in Figure 6-I. The losing pattern
contains three independent local connections. Whenever White plays in one of
the three local connections, Black replies in the same one. Any move by White
outside of the threat pattern is irrelevant, and Black can afford to skip a move
in reply. In effect, all the cells outside of the threat pattern are “dead cells”, and
the winning player need never to play in any of them.

Each of the local connections could be proved independently. Pattern search
does not recognize this; for each move that White tries in region c, the subsequent
search proves the connections at a and b again from scratch.
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I: White to move loses because of three independent local patterns

II: White tries one reply

III: Conjecturing away the seemingly unrelated parts of the pattern

Fig. 6. Checking the conjectured local connections



There may be a way to make pattern search treat the local patterns indepen-
dently. When White tries the move in Figure 6-II, the search returns a win for
Black with the indicated pattern. White now notices that this pattern consists of
three groups of cells. Two of those groups were not touched by the latest white
move played. So White may now conjecture the following: If the position is in-
deed a loss, and the losing threat pattern consists of independent sub-patterns,
then the latest move played only interfered with one of those sub-patterns.

Let the interfered groups be those groups of the pattern in 6-II that are adja-
cent to White’s last move, and call the other groups untouched. If the conjecture
is true, then the untouched groups are strong local connections, and the inter-
fered group is a weak local connection. This weak local connection would be part
of a strong local connection that is not yet fully discovered.

To prove the conjecture, White can alter the position as shown in 6-III. The
untouched sub-patterns are replaced by black pieces, to solidify their connections,
and they are surrounded by white pieces. The latter is necessary, because the
conjecture is that the remaining parts of the losing pattern in 6-I are independent
from the part that is yet to be discovered. It must therefore be enforced that
Black wins without using any of the cells adjacent to the untouched groups,
which is achieved by adding the surrounding white pieces.

In the position thus created, White needs only to check the cells in the
interfered group of 6-II. These are the three cells indicated in 6-III. If this yields
a loss for White, then position 6-I is also a loss for White, and the threat pattern
for 6-I is the one in 6-III plus the untouched groups of 6-II.

2.5 Heuristic pattern search

While very powerful in theory, threat patterns are very sensitive to good move
ordering in practice. Figure 7 shows an example. If the move at a is tried first,
the algorithm will conclude that the position is a win with a threat pattern
consisting of only cell a. If on the other hand the move at b is tried first, the win
is still proved, but the resulting threat pattern contains three cells. The pattern
is still valid and correct, but it is bigger than it needs to be.

When backing up the patterns, they quickly grow too large if special care is
not taken to keep them as small as possible. A pattern that covers the entire
board is trivially valid, but it is also useless since the search then becomes a
standard alpha-beta search.

Another aspect of pattern search is that it can only prove wins and losses. It
does not find heuristic values when no proof can be found. Both these problems
can be alleviated by using pattern search as an enhancement of standard heuristic
alpha-beta search. If iterative deepening is used, the fastest win will be spotted
first, and the threat pattern will tend to be as small as possible. Pseudocode for
a pattern-enhanced alpha-beta algorithm is included in Appendix B.
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I: Black to move wins II: threat pattern after trying move b

Fig. 7. The result of an unfortunate choice of move

3 Evaluation

Methods to arrive at heuristic evaluations of Hex positions are difficult to find.
Concepts such as material balance and mobility, useful in many other board
games, are meaningless in Hex. Evaluation methods are commonly based on
measuring properties of the game graph, such as network flow in Hexy and
graph distance in Queenbee. The only known method that does not use such a
model is Y-reduction, to be described in Section 4.

Graph models such as network flow and distance use a graph representation of
Hex as shown in Figure 8, in which Black tries to connect s and t. Each position
has two such graphs, one from Black’s point of view and one from White’s. See
Appendix A for an explanation of these graphs.
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Fig. 8. Graph representations from Black’s point of view

3.1 Network flow

The graph reduction representation of a Hex position can be viewed as a flow
network, where fluid flows from s to t. Each link has unit capacity, except for



the links emanating from s and t which have infinite capacity. The maximum
flow capacity from s to t is taken as a heuristic evaluation of the position.

Closely related to this approach is the electrical circuit model, in which it is
not fluid but electricity that flows through the network. The network links in this
case do not have maximum capacity, but they all have unit resistance. The links
at s and t have zero resistance. The overall resistance between s and t is used as
a heuristic evaluation of the position. Shannon and Moore built a physical Hex
playing machine which used this approach [Sha53]. The same method is used in
Hexy.

These models can also be used to obtain heuristic values for the available
moves, based on the amount of current flowing through the links of the net-
work. Hexy uses the energy dissipation of all links adjacent to a node, which in
the graph reduction representation amounts to summing the squares of all the
currents in those links, as the links all have unit resistance.

Network flow models are related to the concept of graph connectivity, which
refers to the number of distinct paths that connect two vertices in a graph. A
high degree of connectivity leads to a high flow capacity or electrical capacity,
and in terms of Hex, it leads to a favourable position as there are many ways to
connect.

3.2 Graph distance

The graph distance between s and t can be used as a rough heuristic estimate
of the position, as it starts at n+1 and reaches 1 if and only if the game is won.
This estimate turns out to be rather poor, as can be seen by recognizing that
playing a move in the center of an empty board does not decrease the graph
distance for the opponent.

A better method is the “two-distance” measure used in Queenbee. In the
regular graph distance metric, the distance of a vertex v to the goal node t

is one more than the minimum distance of v’s neighbours to t. Measuring the
distance this way amounts to computing the number of “free moves” needed
to complete the connection, ignoring the opponent’s endeavours to block these
connections. The two-distance looks instead at the second shortest distance of
v’s neighbours to t, the intuition being that the opponent can block the shortest
one.

Queenbee sums up the two-distance to the two black borders in the black
reduction graph. The smallest of these numbers is taken as the overall black
distance; the number of occurrences of this distance on the board is black’s po-
tential. When two positions have equal distance between the borders, then the
position with the highest potential is preferable as there are more ways to realize
this distance. The full board evaluation is obtained by calculating the same num-
bers for White in the white graph, and then considering the difference between
these numbers for Black and for White. Moves are evaluated by summing the
black and white numbers in each cell, recognizing that important cells are those
that are close to establishing a winning connction for both players. players.
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Fig. 9. A counterexample of two-distance

Unlike network flow and connectivity models, two-distance captures the ad-
versarial nature of a two-player game. However, it suffers from one important
drawback: It can sometimes label a position as lost when it is in fact a win. An
example is shown in Figure 9. The black two-distance between the black borders
is infinite, while the white two-distance between the white borders is not. The
two-distance metric concludes that Black is lost. In reality, the position is a win
for Black even when White plays first. Such pathological positions are rare, but
they do occur in game tree searches and may occasionally alter the search result.

4 Y Reduction

The Game of Y, discovered by Craig Schensted, is closely related to Hex. Indeed,
Hex is a special case of it. This makes the game PSPACE-complete, and any
method for playing Y immediately yields a method for playing Hex. Such a
method is Y reduction, based on observations by Craig Schensted and Steven
Meyers.

4.1 The game of Y

The game of Y is played on a triangular board tesselated with hexagons. The
goal is to establish a chain that connects all three sides of the board, such as in
Figure 10. Figure 11 demonstrates that Hex is a special case of Y. Playing Y in
this diagram is equivalent to playing Hex in the empty region. Thus, a size n×n

Hex board can be turned into a Y board of size 2n− 1 by adding two triangular
regions. Each region is filled with pieces of the colour of the Hex border that it
is appended to.

By arguments analagous to those used in Hex, it can be seen that Y cannot
end in a draw and that it must be a theoretical win for the first player. One
way of arriving at a surprising proof of the no-draw property is based on micro

reduction, which is described in the next section.



T
�
T
�
T
�
T
�
T
�

�
T
�
T
�
T
�
T
�
T

�
T
�
T
�
T
�
T

�
T
�
T
�
T

�
T
�
T

�
T

kg

{

{

{

kg

kg

kg

{

{

Fig. 10. A size-5 Y board with a winning chain for Black
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4.2 Micro reduction

Consider a size-n Y board completely filled with black and white pieces, as in
Figure 12-I. This board is then reduced to a board of size n− 1, where each cell
on the n − 1 board corresponds to a group of three cells on the n board. These
three cells must be neighbours, and form a little triangle oriented the same way
as the whole board. The n−1 board then gets filled with black and white pieces,
where the colour of a cell is determined by the majority of the colours of the
three corresponding cells on the bigger board.
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Fig. 12. Micro reduction steps

As it turns out, the colour of the lone piece on the size-1 board indicates who
the winner is on each of the preceding boards. This is because every chain of one
colour is preserved by the reduction step, as each link in the chain corresponds
to a small triangle with at least two pieces of that colour. If a chain touches one
side of the board, then so does the corresponding chain in the reduced board. A
winning chain will therefore produce corresponding winning chains in all of the
smaller boards, including the final trivial size-1 board on which a winning chain
is simply the one piece on the board.

This micro reduction method immediately proves that Y cannot end in a
draw. By extension, it gives a no-draw proof for Hex that is quite different from
the ones given by Beck [BBC69] and Gale [Gal86].

4.3 Macro reduction

A Y board can also be reduced to a board of one size smaller by omitting one
of the three border rows. This is called macro reduction. Each position has
three macro-reduced subpositions. The observation is that a position contains a
winning chain if and only if at least two of the three macro-reduced subpositions
do. This can be seen by realizing that the winners of the three subpositions
are readily displayed in the size-2 board of the penultimate step in the micro
reduction chain.

Macro reduction does not immediately suggest a plausible method for play-
ing Y, since it decomposes the board into 3n subpositions, which is a number



far greater than the O(n3) pieces that micro reduction produces, even when tak-
ing into account that there are many duplicates in the tree of macro reduced
subpositions.

4.4 Reduction of partially empty boards

If micro reduction can be extended to positions with empty cells, a heuristic
evaluation method for Y and for Hex is generated. One way to do this is to
assign a probability of ownership to each cell on the board. Cells that already
contain pieces have probability 1 or 0 according to who owns them. Empty cells
have probability 1

2 . When reducing a triangle of cells with probabilities p1, p2,
and p3, the probability q of the reduced cell is the probability of owning at least
two of the pi cells. According to probability theory, this is

q = p1p2 + p1p3 + p2p3 − 2p1p2p3. (1)

In reality, Y is not a game of chance. Moreover, the probabilities pi are not
independent, since playing a piece on the board alters a growing number of
probabilities down the chain of reduced diagrams. Nevertheless this method may
provide a good quick-and-dirty way to give a heuristic evaluation of a Y position.

To simplify matters, the interval [-1,+1] can be used instead of [0,1]. In that
case, already played pieces have values -1 and +1 and an empty cell has value
0. The equation then becomes

q =
1

2
(p1 + p2 + p3 − p1p2p3). (2)

This reduction method generates a pyramid of values, starting with the
1
2n(n + 1) cells of the game board and going down to the single value of the
size-1 board that represents the final evaluation. The number of calculations
carried out in the entire reduction chain is 1

6n(n + 1)(n + 2). The calculations
can be done incrementally, since they are all local. This saves quite a bit of work
as playing a move leaves most of the values unchanged on the bigger boards in
the reduction chain.

4.5 Move evaluation

The reduction heuristic can be used to rate the available moves. The most
straightforward way to do this is to try each move and see how much the eval-
uation changes. This would amount to a O(n3) × O(n2) computation. A good
estimate can be obtained much faster by calculating the partial derivative of
the final evaluation with respect to each of the values in the reduction pyramid.
These can be calculated easily; if v is the final evaluation then

∂v

∂p1
=

∂v

∂q
·

∂q

∂p1
=

∂v

∂q
·
1

2
(1 − p2p3). (3)



This is the contribution of 4(p1p2p3). Since p1 is usually part of three reduced
triangles, the contributions of the other triangles need to be added.

This computation builds a second pyramid of O(n3) values in O(n3) steps,
using the values contained in the reduction pyramid. The move evaluation pyra-
mid is built in the other direction, starting with the size-1 diagram.

The partial derivatives are not exact predictions for the change in v, but this
need not matter as v was itself a rough estimate.
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A Hex Graphs

Hex is a special case of the Shannon Switching Game, a graph vertex colouring
game. The Shannon Switching Game can be played on any graph by choosing
two particular vertices s and t, and giving player Black the task to connect these
two vertices while player White tries to prevent this. Figure 13 shows a game
graph that is equivalent to a 5 × 5 Hex board.
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Fig. 13. A Shannon Switching Game graph equivalent to 5 × 5 Hex

When White colours a vertex v, the resulting position is equivalent to the
one in which v was simply deleted from the graph. Similarly, a move by Black is
equivalent to contracting the vertex, which means removing it from the graph and
introducing new edges between each pair of v’s neighbours. Thus, the graph is
reduced by one vertex every move, and the game ends when s and t become direct
neighbours or become disconnected. Figure 14 shows a position in the graph
colouring game on the left, and the equivalent position in the graph reduction
game on the right.

s
s
s

s
s
s

s
s
s
s

s
s
s
s
s

s
s

s

s
s
s

s
s

s"
"
"
"
"
"

"
"
"
"
"
"

"
"
"
"

"

"
"
"
"
"
"

"
"
"
"
"
"b

b
b
b
b
b

b
b
b
b
b
b

b
b
b
b
b
b

b
bb

b
bb

b
b
b
b
b
b

is

it

�
��
"

""     

�
��"

""   
 

{
kg

s
s
s

s
s
s

s
s
s
s

s
s

s
s

s
s

s

s
s
s

s
s

s"
"
"
"
"
"

"
"
"
"
"
"

""
"
"
"
"
"
"

"
"
"
"
"
"b

b
b
b
b
b

b
b
b
b
b
b

b
b
b
b
b
b

bb

bb

b
b
b
b
b
b

is

it

�
��
"

""     

�
��"

""   
 

�
��T
TT

T
TT

I: graph colouring representation II: graph reduction representation

Fig. 14. Two representations of the same Hex position

The graphs in Figure 14 represent the game from Black’s point of view. The
same position can also be represented from White’s point of view as in Figure 15.

B Algorithms

Below follows the pseudo code for the pattern search algorithm and the Y reduc-
tion algorithm. The basic pattern search in Table 1 only returns wins and losses,
no heuristic values. The auxiliary function won(P ) detects a winning chain for

the side to move in position P . The values returned consist of a win/loss value
along with a threat pattern that proves this result. As per the definition of a
threat pattern, anything outside of the pattern does not affect the win or loss.
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Fig. 15. The same position as in Figure 14, but from White’s point of view

Table 2 shows how to enhance basic alpha-beta search with pattern search.
The search behaves like alpha-beta, with the addition of threat patterns that
are returned whenever the value is a proven win or loss. If the returned value is
a heuristic value, the returned threat pattern is ignored. The auxiliary function
evaluate(P ) provides a heuristic evaluation of position P , which must be strictly
more than loss and less than win.

Table 3 contains the Y reduction algorithm for calculating the heuristic board
evaluation as well as the individual move evaluations. The algorithm first seeds
eval[...][...][boardsize− 1] with the contents of the board, and then calculates
the successive Y reductions using

e
(k)
i,j = f(e

(k+1)
i,j , e

(k+1)
i+1,j , e

(k+1)
i,j+1 )

where f(p, q, r) = 1
2 (p+q+r−2pqr), and e(k) contains the values in the triangle

of size k + 1. Eventually eval[0][0][0] is reached, containing the final heuristic
value. Next, the move values are calculated, starting with move[0][0][0] = 1 and
using

m
(k)
i,j =

∂e
(0)
0,0

∂e
(k)
i,j

=
∑

p,q

(
∂e

(0)
0,0

∂e
(k−1)
p,q

·
∂e

(k−1)
p,q

∂e
(k)
i,j

)

=
∂e

(0)
0,0

∂e
(k−1)
i,j

·
∂e

(k−1)
i,j

∂e
(k)
i,j

+
∂e

(0)
0,0

∂e
(k−1)
i−1,j

·
∂e

(k−1)
i−1,j

∂e
(k)
i,j

+
∂e

(0)
0,0

∂e
(k−1)
i,j−1

·
∂e

(k−1)
i,j−1

∂e
(k)
i,j

= m
(k−1)
i,j · g(e

(k)
i+1,j , e

(k)
i,j+1) +

m
(k−1)
i−1,j · g(e

(k)
i,j , e

(k)
i−1,j+1) +

m
(k−1)
i,j−1 · g(e

(k)
i+1,j−1, e

(k)
i,j )

where g(q, r) = ∂
∂p

f(p, q, r) = 1
2 (1 − qr).

The search algorithm can be enhanced with any desirable alpha-beta en-
hancement, just as long as care is taken that win and loss values are only



returned when they are proven, and that the patterns are used only when the
value is proven. The Y reduction algorithm can be improved by doing the calcula-
tions incrementally as moves are made and unmade on the board. The algorithm
as shown in Table 3 computes values for the game of Y; it is easily modified for
n×n Hex by converting the position into a Y position with boardsize = 2n−1
and seeding two triangular regions appropriately as described in Section 4.1 and
Figure 11.



type pattern t {
int value ∈ {win,loss};
boolean pattern[boardsize][boardsize];

}

pattern t Patternsearch(position pos) {
pattern t Ψ;

if (Won(pos)) {
Ψ.pattern := ∅;
Ψ.value := win;

return Ψ;

}

movelist := Ω; /* initiate move list with all empty cells */
Ψ.pattern := ∅; /* initiate pattern with empty set */

foreach (move ∈ movelist) {
ψ = Patternsearch(pos ⊕ move);
if (ψ.value ≡ loss) { /* move was a winning move; return immediately */

Ψ.value := win;

Ψ.pattern := move ∪ ψ.pattern;
return Ψ;

}
else { /* move was a losing move */

Ψ.pattern := Ψ .pattern ∪ ψ.pattern;
movelist := movelist ∩ ψ.pattern; /* discard all moves not in ψ.pattern */

}
}

Ψ .value := loss; /* no winning moves found; position is a loss */
return Ψ;

}

Table 1. The pattern search algorithm



type pattern t {
float value;
boolean pattern[boardsize][boardsize];

}

pattern t Pattern-ab-search(position pos, float α, float β, int depth) {
pattern t Ψ;

float best;

if (Won(pos)) {
Ψ.pattern := ∅;
Ψ.value := win;

return Ψ;

}

if (depth ≡ 0) { /* return heuristic evaluation, pattern is irrelevant */
Ψ.value := evaluate(pos);
return Ψ;

}

movelist := Ω; /* initiate move list with all empty cells */
Ψ.pattern := ∅; /* initiate pattern with empty set */
Ψ.value := loss;

foreach (move ∈ movelist) {
ψ = Pattern-ab-search(pos ⊕ move, -β, -Max(α,best), depth-1);
if (ψ.value ≡ loss) { /* move was a winning move; return immediately */

Ψ.value := win;

Ψ.pattern := move ∪ ψ.pattern;
return Ψ;

}
else if (ψ.value ≡ win) { /* move was a losing move */

Ψ.pattern := Ψ .pattern ∪ ψ.pattern;
movelist := movelist ∩ ψ.pattern; /* discard all moves not in ψ.pattern */

}
Ψ .value := Max(Ψ .value, -ψ.value);

if (Ψ .value ≥ β) { /* alpha-beta cutoff */
return Ψ;

}
}

return Ψ;

}

Table 2. Pattern-enhanced alpha-beta search



type pyramid t {
float eval[boardsize][boardsize][boardsize];
float move[boardsize][boardsize][boardsize];

}

float f(float p, float q, float r) {
return 1

2
(p+ q + r − pqr);

}

float g(float q, float r) {
return 1

2
(1 − qr);

}

pyramid t Y-eval(position pos) {
pyramid t ∆;

/* seed the eval[...][...][boardsize-1] values */
forall(i ≥ 0, j ≥ 0, i+ j < boardsize) {

∆.eval[i][j][boardsize-1] := pos[i][j]; /* +1 = me, -1 = opponent, 0 = empty */
}

/* calculate all other eval values */
for (k := boardsize-2; k ≥ 0; k--) {

forall (i ≥ 0, j ≥ 0, i+ j + k < boardsize) {
∆.eval[i][j][k] := f( ∆.eval[i][j][k + 1],

∆.eval[i + 1][j][k + 1],
∆.eval[i][j + 1][k + 1]);

}
}

/* calculate the move values */
move[0][0][0] := 1;

for (k := 1; k < boardsize; k++) {
forall (i ≥ 0, j ≥ 0, i+ j + k < boardsize) {

∆.move[i][j][k] := ∆.move[i][j][k − 1]
* g(∆.eval[i + 1][j][k],∆.eval[i][j + 1][k])

+ ∆.move[i − 1][j][k − 1]
* g(∆.eval[i][j][k],∆.eval[i − 1][j + 1][k])

+ ∆.move[i][j − 1][k − 1]
* g(∆.eval[i + 1][j − 1][k],∆.eval[i][j][k])

}
}

return ∆;

}

Table 3. Calculating Y values


