
Off-policy evaluation for slate recommendation

Adith Swaminathan
Cornell University

adith@cs.cornell.edu

Akshay Krishnamurthy, Alekh Agarwal, Miroslav Dudík,
John Langford, Damien Jose, Imed Zitouni

Microsoft
{akshaykr,alekha,mdudik,jcl,dajose,izitouni}@microsoft.com

Abstract

This paper studies the evaluation of policies that recommend an ordered set of items
(e.g., a ranking) based on some context—a common scenario in web search, ads and
recommender systems. We develop the first practical technique for evaluating page-
level metrics of such policies offline using logged past data, alleviating the need
for online A/B tests. Our method models the observed quality of the recommended
set (e.g., time to success in web search) as an additive decomposition across items.
Crucially, the per-item quality is not directly observed or easily modeled from the
item’s features. A thorough empirical evaluation reveals that this model fits many
realistic measures of quality and theoretical analysis shows exponential savings in
the amount of required data compared with prior off-policy evaluation approaches.

1 Introduction

In recommendation systems for e-commerce, online advertising, search, or news, we would like to
use the data collected during operation to test new content-serving algorithms (called policies) along
metrics such as revenue and number of clicks [4, 17]. This task is called off-policy evaluation and
standard approaches, namely inverse propensity scores (IPS) [9, 11], require unrealistically large
amounts of past data to evaluate whole-page metrics that depend on multiple recommended items,
such as when showing ranked lists. Therefore, the industry standard for evaluating new policies is
to simply deploy them in weeks-long A/B tests [13]. Replacing or supplementing A/B tests with
accurate off-policy evaluation, running in seconds instead of weeks, would revolutionize the process
of developing better recommendation systems. For instance, we could perform automatic policy
optimization (i.e., learn a policy that scores well on whole-page metrics), a task which is currently
plagued with bias and an expensive trial-and-error cycle.

The data we collect in these recommendation applications provides only partial information, which is
formalized as contextual bandits [2, 9, 15]. We study a combinatorial generalization of contextual
bandits, where for each context a policy selects a list, called a slate, consisting of component
actions. In web search, the context is the search query augmented with a user profile, the slate is
the search results page consisting of a list of retrieved documents, and actions are the individual
documents. Example metrics are page-level measures such as time-to-success, NDCG (position-
weighted relevance) or more general measures of user satisfaction.

The key challenge in off-policy evaluation and optimization is the fact that a new policy, called the
target policy, recommends different slates than those with recorded metrics in our logs. Without
structural assumptions on the relationship between slates and observed metrics, we can only hope to
evaluate the target policy if its chosen slates occur in the logged past data with a decent probability.
Unfortunately, the number of possible slates is combinatorially large, e.g., when recommending ` of

ar
X

iv
:1

60
5.

04
81

2v
2 

 [
cs

.L
G

] 
 2

4 
M

ay
 2

01
6



0.0 0.2 0.4 0.6 0.8 1.0
Number of logged samples (n)

0.0

0.2

0.4

0.6

0.8

1.0

R
M

S
E

103 10410−1

100

101
Reward: Negative Time-to-success

103 104

10−3

10−2

Reward: Utility Rate

IPS PI DM OnPolicy

Figure 1: Off-policy evaluation of two whole-page user-satisfaction metrics on proprietary search
engine data. Average RMSE over 50 runs on a log-log scale. Our method (pseudoinverse or PI)
achieves the best performance for moderate data sizes. The unbiased IPS method suffers high
variance, and direct modeling (DM) suffers high bias. ONPOLICY is the expensive alternative of
deploying the policy. Improvements of PI are significant, with p-values in text. Details in Sec. 4.3.

m items, there are mΩ(`) ordered sets, so the likelihood of even one match in past data with a target
policy is extremely small, leading to a complete breakdown of fully general techniques such as IPS.

To overcome this limitation, some authors [4, 22] restrict their logging and target policies to a
parameterized stochastic policy class. Others assume specific parametric (e.g., linear) models relating
the observed metrics to the features describing a slate [1, 21, 10, 6, 19]. Yet another paradigm, called
semi-bandits, assumes that the slate-level metric is a sum of observed action-level metrics [12, 14].

We seek to evaluate arbitrary policies, while avoiding strong assumptions about user behavior, as
in parametric bandits, or the nature of feedback, as in semi-bandits. We relax restrictions of both
parametric and semi-bandits. Like semi-bandits, we assume that the slate-level metric is a sum of
action-level metrics that depend on the context, the action, and the position on the slate, but not on
the other actions in the slate. Unlike semi-bandits, these per-action metrics are unobserved by the
decision maker. This model also means that the slate-level metric is linearly related with the unknown
vector listing all the per-action metrics in each position. However, this vector of per-action metric
values can depend arbitrarily on each context, which precludes fitting a single linear model of rewards
(with dimensionality independent of the number of contexts) as usually done in linear bandits.

This paper makes the following contributions:

1. The additive decomposition assumption (ADA): a realistic assumption about the feedback struc-
ture in combinatorial contextual bandits, which generalizes contextual, linear, and semi-bandits.

2. The pseudoinverse estimator (PI) for off-policy evaluation: a general-purpose estimator for
any stochastic logging policy, unbiased under ADA. The number of logged samples needed for
evaluation with error ε when choosing ` out of m items is typically O(`m/ε2)—an exponential
gain over the mΩ(`) complexity of other unbiased estimators. We provide careful distribution-
dependent bounds based on the overlap between logging and target policies.

3. Experiments on a real-world search ranking dataset: The strong performance of the PI estimator
provides, to our knowledge, the first demonstration of high quality off-policy evaluation of
whole-page metrics, comprehensively outperforming prior baselines (see Fig. 1).

4. Off-policy optimization: We provide a simple procedure for learning to rank (L2R) using the PI
estimator. Our procedure tunes L2R models directly to online metrics by leveraging pointwise
supervised L2R approaches, without requiring pointwise feedback.

Without contexts, several authors have studied a similar linear dependence of the reward on action-
level metrics [7, 21]. Their approaches compete with the best fixed slate, whereas we focus on
evaluating arbitrary context-dependent policies. While they also use the pseudoinverse estimator in
their analysis (see, e.g., Lemma 3.2 of Dani et al. [7]), its role is different. They construct specific

2



distributions to optimize the explore-exploit trade-off, while we provide guarantees for off-policy
evaluation with arbitrary logging distributions, requiring a very different analysis and conclusions.

2 Setting and notation

In combinatorial contextual bandits, a decision maker repeatedly interacts as follows:

1. the decision maker observes a context x drawn from a distribution D(x) over some space X;

2. based on the context, the decision maker chooses a slate s = (s1, . . . , s`) consisting of actions sj ,
where a position j is called a slot, the number of slots is `, actions at position j come from some
space Aj(x), and the slate s is chosen from a set of allowed slates S(x) ⊆ A1(x)× · · · ×A`(x);

3. given the context and slate, the environment draws a reward r ∈ [−1, 1] from a distribution
D(r | x, s). Rewards in different rounds are independent, conditioned on contexts and slates.

The context space X can be infinite, but the set of actions is of finite size. For simplicity, we assume
|Aj(x)| = mj for all contexts x ∈ X and define m := maxjmj as the maximum number of actions
per slot. The goal of the decision maker is to maximize the reward.

The decision maker is modeled as a stochastic policy π that specifies a conditional distribution π(s |x)
(a deterministic policy is a special case). The value of a policy π, denoted V (π), is defined as the
expected reward when following π:

V (π) := Ex∼DEs∼π(·|x)Er∼D(·|x,s)

[
r
]
.

To simplify derivations, we extend the conditional distribution π into a distribution over triples
(x, s, r) as π(x, s, r) := D(r | x, s)π(s | x)D(x). With this shorthand, we have V (π) = Eπ[r].

To finish this section, we introduce notation for the expected reward for a given context and slate,
which we call the slate value, and denote as V (x, s) := Er∼D(·|x,s)[r].
Example 1 (Cartesian product). Consider whole-page optimization of a news portal where the reward
is the whole-page advertising revenue. The context x is the user profile, the slate is the news-portal
page with slots corresponding to news sections or topics,1 and actions are the news articles. It is
natural to assume that each article can only appear in one of the sections, so that Aj(x) ∩Ak(x) = ∅
if j 6= k. The set of valid slates is the Cartesian product S(x) =

∏
j≤`Aj(x). The number of valid

slates is exponential in `, namely, |S(x)| = ∏j≤`mj .

Example 2 (Ranking). Consider information retrieval in web search. Here the context x is the user
query along with user profile, time of day etc. Actions correspond to search items (such as webpages).
The policy chooses ` of m items, where the set A(x) of m items for a context x is chosen from a large
corpus by a fixed filtering step (e.g., a database query). We have Aj(x) = A(x) for all j ≤ `, but the
allowed slates S(x) have no repeated actions. The slots j ≤ ` correspond to positions on the search
results page. The number of valid slates is exponential in ` since |S(x)| = m!/(m− `)! = mΩ(`).
A reward could be the negative time-to-success, i.e., negative of the time taken by the user to find a
relevant item, typically capped at some threshold if nothing relevant is found.

2.1 Off-policy evaluation and optimization

In the off-policy setting, we have access to the logged data (x1, s1, r1), . . . , (xn, sn, rn) collected
using a past policy µ, called the logging policy. Off-policy evaluation is the task of estimating the
value of a new policy π, called the target policy, using the logged data. Off-policy optimization is the
harder task of finding a policy π̂ that improves upon the performance of µ and achieves a large reward.
We mostly focus on off-policy evaluation, and show how to use it as a subroutine for off-policy
optimization in Sec. 4.2.

There are two standard approaches for off-policy evaluation. The direct method (DM) uses the logged
data to train a (parametric) model r̂(x, s) to predict the expected reward for a given context and slate.
V (π) is then estimated as

V̂DM(π) = 1
n

∑n
i=1

∑
s∈S(x) r̂(xi, s)π(s | xi) . (1)

1For simplicity, we do not discuss the more general setting of showing multiple articles in each news section.

3



The direct method is frequently biased because the reward model r̂(x, s) is typically misspecified.

The second approach, which is provably unbiased (under modest assumptions), is the inverse propen-
sity score (IPS) estimator [11]. The IPS estimator reweights the logged data according to ratios of
slate probabilities under the target and logging policy. It has two common variants:

V̂IPS(π) = 1
n

∑n
i=1 ri ·

π(si|xi)
µ(si|xi) , V̂wIPS(π) =

∑n
i=1 ri ·

π(si|xi)
µ(si|xi)

/ (∑n
i=1

π(si|xi)
µ(si|xi)

)
. (2)

The two estimators differ only in their normalizer. The IPS estimator is unbiased, whereas the
weighted IPS (wIPS) is only asymptotically unbiased, but usually achieves smaller error due to
smaller variance. Unfortunately, the variance of both estimators grows linearly with the magnitude of
π(s | x)/µ(s | x), which can be as bad as Ω(|S(x)|). This is prohibitive when |S(x)| = mΩ(`).

3 Our approach

To reason about the slates, we consider vectors in R`m whose components are indexed by pairs (j, a)
of slots and possible actions in them. A slate is then described by an indicator vector 1s ∈ R`m
whose entry at position (j, a) is equal to 1 if the slate s has action a in the slot j, i.e., if sj = a. At
the foundation of our approach is an assumption relating the slate value to its component actions:

Assumption 1 (ADA). A combinatorial contextual bandit problem satisfies the additive decomposi-
tion assumption (ADA) if for each context x ∈ X there exists a (possibly unknown) intrinsic reward
vector φx ∈ R`m such that the slate value decomposes as V (x, s) = 1Ts φx =

∑`
j=1 φx(j, sj).

ADA only posits the existence of intrinsic rewards, not their observability. This distinguishes it from
semi-bandits where {φx(j, sj)}`j=1 can be observed for the sj’s chosen in context x. The slate value
is described by a linear relationship between 1s and the unknown “parameters” φx, but we do not
require that φx be easy to fit from features describing contexts and actions, which is the key departure
from the direct method and parametric bandits.

While ADA rules out interactions among different actions on a slate,2 its ability to vary intrinsic
rewards arbitrarily across contexts can capture many common metrics in information retrieval, such
as the normalized discounted cumulative gain (NDCG) [5], a common reward metric in web ranking:

Example 3 (NDCG). For a given slate s we first define a discounted cumulative gain value:

DCG(x, s) :=
∑`
j=1

2rel(x,sj)−1
log2(j+1) ,

where rel(x, a) ≥ 0 is the relevance of document a on query x. We define NDCG(x, s) :=
DCG(x, s)/DCG?(x) where DCG?(x) = maxs∈S(x) DCG(x, s), so NDCG takes values in [0, 1].
Thus, NDCG satisfies ADA with φx(j, a) =

(
2rel(x,a) − 1

) /
log2(j + 1)DCG?(x).

In addition to ADA, we also make the standard assumption that the logging policy puts non-zero
probability on all slates that can be potentially chosen by the target policy. This assumption is also
required for the unbiasedness of IPS, otherwise off-policy evaluation is impossible [16].

Assumption 2 (ABS). The off-policy evaluation problem satisfies the absolute continuity assumption
if µ(s | x) > 0 whenever π(s | x) > 0 with probability one over x ∼ D.

3.1 The pseudoinverse estimator

Our estimator uses certain moments of the logging policy µ, called marginal values and denoted
θµ,x ∈ R`m, and their empirical estimates, called marginal rewards and denoted θ̂i ∈ R`m:

θµ,x := Eµ[r1s | x] and θ̂i := ri1si .

Recall that µ is viewed here as a distribution over triples (x, s, r). In words, the components θµ,x(j, a)
accumulate the rewards only when the policy µ chooses a slate s with sj = a. The random variable
θ̂i estimates θµ,x at xi by the observed reward for the slate si displayed for xi in our logs. The key

2 We discuss limitations of ADA and directions to overcome them in Sec. 5.

4



insight is that the marginal value θµ,x(j, a) provides an indirect view of φx(j, a), occluded by the
effect of actions in slots k 6= j. Specifically, from ADA and the definition of θµ,x, we obtain

θµ,x(j, a) = µ(sj = a | x)φx(j, a) +
∑
k 6=j

∑
a′∈Ak(x)

µ(sj = a, sk = a′ | x)φx(k, a′) . (3)

Eq. (3) represents a linear relationship between θµ,x and φx, which is concisely described by a matrix
Γµ,x ∈ R`m×`m, with

Γµ,x(j, a; k, a′) :=


µ(sj = a | x) if j = k and a = a′,
µ(sj = a, sk = a′ | x) if j 6= k,
0 otherwise.

Thus, θµ,x = Γµ,xφx. If Γµ,x was invertible, we could write φx = Γ−1
µ,xθµ,x and use ADA to obtain

V (x, s) = 1Ts Γ−1
µ,xθµ,x. We could then replace θµ,xi by its unbiased estimate θ̂i to get an unbiased

estimate of V (xi, s). In reality, Γµ,x is not invertible. However, it turns out that the above strategy
still works, we just need to replace the inverse by the pseudoinverse: 3

Theorem 1. If ADA holds and µ(s | x) > 0, then V (x, s) = 1Ts Γ†µ,xθµ,x.

This gives rise to the value estimator, which we call the pseudoinverse estimator or PI for short:

V̂PI(π) =
1

n

n∑
i=1

∑
s∈S

π(s | xi)1Ts Γ†µ,xi θ̂i =
1

n

n∑
i=1

ri · qTπ,xiΓ†µ,xi1si , (4)

where in Eq. (4), we have expanded the definition of θ̂i and introduced the notation qπ,x for the
expected slate indicator under π conditional on x, qπ,x := Eπ[1s | x]. The sum over s required to
obtain qπ,xi in Eq. (4) can be estimated with a small sample.

Theorem 1 immediately yields the unbiasedness of V̂PI:

Theorem 2. If ADA and ABS hold, then the estimator V̂PI is unbiased, i.e., Eµn [V̂PI] = V (π), where
the expectation is over the n logged examples sampled i.i.d. from µ.

Example 4 (PI when ` = 1). When the slate consists of a single slot, the policies recommend a
single action chosen from some set A(x) for a context x. In this case PI coincides with IPS since

Γµ,x = diag
(
µ(a | x)

)
a∈A(x)

, Γ†µ,x = diag
(
1/µ(a | x)

)
a∈A(x)

, and qπ,x = (π(a | x))a∈A(x) .

Example 5 (PI when π = µ). When the target policy coincides with logging, the estimator simplifies
to the average of rewards: V̂PI(π) = 1

n

∑n
i=1 ri (see Appendix C). For ` = 1, this follows from the

previous example, but it is non-trivial to show for ` ≥ 2.

Example 6 (PI for a Cartesian product with uniform logging). The PI estimator for the Cartesian
product slate space when µ is uniform over slates simplifies to

V̂PI(π) = 1
n

∑n
i=1 ri ·

(∑`
j=1

π(sij |xi)
1/mj

− `+ 1
)
,

by Prop. 3 in Appendix D.1. Note that unlike IPS, which divides by probabilities of whole slates,
the PI estimator only divides by probabilities of actions appearing in individual slots. Thus, the
magnitude of each term of the outer summation is only O(`m), whereas the IPS terms are mΩ(`).

Example 7 (PI for rankings with ` = m and uniform logging). In this case, the PI estimator equals

V̂PI(π) = 1
n

∑n
i=1 ri ·

(∑`
j=1

π(sij |xi)
1/(m−1) −m+ 2

)
,

by Prop. 4 in Appendix D.1. The magnitude of individual terms is again O(`m) = O(m2).

3 A variant of Theorem 1 is proved in a different context by Dani et al. [7]. Our proof, alongside proofs of all
other statements in the paper, is in Appendix.

5



3.2 Deviation analysis

We have shown that the pseudoinverse estimator is unbiased given ADA and have also given examples
when it improves exponentially over IPS, the existing state-of-the-art. We next derive a distribution-
dependent bound on finite-sample error and use it to obtain an exponential improvement over IPS for
a broader class of logging distributions.

Our deviation bound is obtained by an application of Bernstein’s inequality, which requires bounding
the variance and range of the terms appearing in Eq. (4), namely ri · qTπ,xiΓ†µ,xi1si . We bound their
variance and range, respectively, by the following distribution-dependent quantities:

σ2 := Ex∼D
[
qTπ,xΓ

†
µ,xqπ,x

]
, ρ := sup

x

sup
s:µ(s|x)>0

∣∣qTπ,xΓ†µ,x1s

∣∣ . (5)

They capture the “average” and “worst-case” mismatch between the logging and target policy. They
equal one when π = µ (see Appendix C), and in general yield the following deviation bound:

Theorem 3. Assume that ADA and ABS hold, and let σ2 and ρ be defined as in Eq. (5). Then, for
any δ ∈ (0, 1), with probability at least 1− δ,∣∣∣V̂PI(π)− V (π)

∣∣∣ ≤√2σ2 ln(2/δ)

n
+

2(ρ+ 1) ln(2/δ)

3n
.

In Appendix D, Prop. 2, we show that σ2 ≤ ρ, so to bound V̂PI, it suffices to bound ρ. We next show
such a bound for a broad class of logging policies defined as follows:

Definition 1. Let ν denote the uniform policy, that is, ν(s | x) = 1/|S(x)|. We say that a policy µ is
pairwise κ-uniform for some κ ∈ (0, 1] if for all contexts x, actions a, a′, and slots j, k, we have

µ(sj = a, sk = a′ | x) ≥ κν(sj = a, sk = a′ | x) .

For the Cartesian product slate space, this means that µ(sj = a, sk = a′ |x) ≥ κ/(mjmk) for j 6= k.
For rankings, µ(sj = a, sk = a′ | x) ≥ κ/(m(m− 1)) for j 6= k. Given any policy, we can obtain a
pairwise κ-uniform policy by mixing in the uniform distribution with the weight κ.

Proposition 1. Assume that valid slates form a Cartesian product space as in Example 1 or are
rankings as in Example 2. Then for any pairwise κ-uniform logging policy, we have ρ ≤ κ−1`m.

Thus, using the fact that σ2 ≤ ρ, Prop. 1 and Theorem 3 yield |V̂PI(π)− V (π)| ≤ O
(√

κ−1`m/n
)
,

or equivalently O(κ−1`m/ε2) logging samples are needed to achieve accuracy ε.

4 Experiments

We now empirically evaluate the performance of the pseudoinverse estimator in the ranking scenario
of Example 2. We first show that our approach compares favorably to baselines in a semi-synthetic
evaluation on a public data set under the NDCG metric, which satisfies ADA as discussed in
Example 3. On the same data, we further use the pseudoinverse estimator for off-policy optimization,
that is, to learn ranking policies, competitively with a supervised baseline that uses more information.
Finally, we demonstrate substantial improvements on proprietary data from search engine logs for
two user-satisfaction metrics used in practice: time-to-success and utility rate, which are a priori
unlikely to (exactly) satisfy ADA. More detailed results are deferred to Appendices E, F and G.

4.1 Semi-synthetic evaluation

Our semi-synthetic evaluation uses labeled data from the LETOR4.0 MQ2008 dataset [20] to create a
contextual bandit instance. Queries form the contexts x and actions a are the available documents. The
dataset contains 784 queries, 5–121 documents per query and relevance labels rel(x, a) ∈ {0, 1, 2}
for each query-document pair. Each pair (x, a) has a 47-dimensional feature vector f(x, a), which
can be partitioned into title features ftitle, and body features fbody.

To derive a logging policy and a distinct target policy, we first train two lasso regression models,
called predtitle and predbody, to predict relevances from ftitle and fbody, respectively. To create the

6



0.0 0.2 0.4 0.6 0.8 1.0
Number of logged samples (n)

0.0

0.2

0.4

0.6

0.8

1.0

R
M

S
E

103 104 105

10−3

10−2

10−1

100 5 slots; 20 actions/slot; uniform µ

103 104 105

10 slots; 20 actions/slot; uniform µ

wIPS PI DM OnPolicy

103 104 105

5 slots; 20 actions/slot; non-uniform µ

Figure 2: RMSE under uniform logging (α = 0) and non-uniform logging (α = 10).

logs, queries x are sampled uniformly, and the set A(x) consists of top m documents according to
predtitle. The logging policy µ samples from a multinomial distribution over documents in A(x),
parameterized by α ≥ 0: pα(a | x) ∝ exp(α · predtitle(x, a)). Slates are constructed slot-by-slot,
sampling without replacement according to pα. Choosing α ∈ [0,∞) interpolates between uniformly
random and deterministic logging. Our target policy π selects the slate of top ` documents according
to predbody. The slate reward is the NDCG metric defined in Example 3.

We compare our estimator PI with the direct method (DM) and weighted IPS (wIPS, see Eq. 2),
which out-performed IPS. Our implementation of DM concatenates per-slot features f(x, sj) into
f(x, s), training a reward predictor on the first n/2 examples and evaluating π using Eq. (1) on the
other n/2 examples. We experimented with regression trees, ridge and lasso regression for DM, and
always report results for the choice with the smallest RMSE at n = 106 examples. We also include
an aspirational baseline, ONPOLICY. This corresponds to deploying the target policy as in an A/B
test and returning the average of observed rewards. This is the expensive alternative we wish to avoid.

We plot the root mean square error (RMSE) of the estimators as a function of increasing data size
over at least 20 independent runs.

In Fig. 2, the first two plots study the RMSE of estimators for two choices of m and `, given the
uniform logging policy µ (i.e., α = 0). In both cases, the pseudoinverse estimator outperforms wIPS
by a factor of 10 or more with high statistical significance, p < 10−8 for both plots and for all n.
The pseudoinverse estimator eventually also outperforms the biased DM with statistical significance,
with p ≤ 7.3× 10−4 for both plots at n = 600K. The cross-over point occurs fairly early (n ≈ 10K)
for the smaller slate space, but is one order larger (n ≈ 100K) for the largest slate space. Note that
DM’s performance can deteriorate with more data, likely because it optimizes the fit to the reward
distribution of µ, which is different from that of π.

As expected, ONPOLICY performs the best, requiring between 10x and 100x less data. However,
ONPOLICY requires to fix the target policy π for each data collection, while off-policy methods like
PI take advantage of massive amounts of logged data to evaluate arbitrary policies. As an aside, since
the user feedback in these experiments is simulated, we can also simulate semi-bandit feedback which
reveals the intrinsic reward of each shown action, and use it directly for off-policy evaluation. This is
a purely hypothetical baseline: with only page-level feedback, one cannot implement a semi-bandit
solution. We compare against this hypothetical baseline in Appendix F.

In Fig. 2 (right panel), we study the effect of the overlap between the logging and target policies, by
taking α = 10, which results in a better alignment between the logging and target policies, While
the RMSE of the pseudoinverse estimator is largely unchanged, both wIPS and DM exhibit some
improvement. wIPS enjoys a smaller variance, while DM enjoys a smaller bias due to closer training
and target distributions. PI continues to be statistically better than wIPS, with p ≤ 10−8 for all n,
and eventually also better than DM, with p ≤ 4.4× 10−4 starting at n = 200K. See Appendices E
and F for more results and the complete set of p-values.

4.2 Semi-synthetic policy optimization

We now show how to use the pseudoinverse estimator for off-policy optimization. We leverage
pointwise learning to rank (L2R) algorithms, which learn a scoring function for query-document pairs
by fitting to relevance labels. We call this the supervised approach, as it requires relevance labels.

7



Instead of requiring relevance labels, we use the pseudoinverse estimator to convert page-level reward
into per-slot reward components—the estimates of φx(j, a)—and these become targets for regression.
Thus, the pseudoinverse estimator enables pointwise L2R even without relevance labels. Given a
contextual bandit dataset {(xi, si, ri)}i≤n collected by the logging policy µ, we begin by creating
the estimates of φxi : φ̂i = Γ†µ,xi θ̂i, turning the i-th contextual bandit example into `m regression
examples. The trained regression model is used to create a slate, starting with the highest scoring
slot-action pair, and continuing greedily (excluding the pairs with the already chosen slots or actions).

We used the MQ2008 dataset from the previous section and created a contextual bandit problem with
5 slots and 20 documents per slot, with a uniformly random logging policy. We chose a standard
5-fold split and always trained on bandit data from 4 folds and evaluated using the supervised data on
the fifth. We compare our approach, titled PI-OPT, against the supervised approach, trained to predict
the gains, equal to 2rel(x,a) − 1, computed using annotated relevance judgements in the training fold
(predicting raw relevances was inferior). Both PI-OPT and SUP train regression trees. We find that
PI-OPT is consistently competitive with SUP after seeing about 1K samples containing slate-level
feedback, and gets a test NDCG of 0.450 at 1K samples, 0.451 at 10K samples, and 0.456 at 100K
samples. SUP achieves a test NDCG of 0.453 by using approximately 12K annotated relevance
judgements. We posit that PI-OPT is competitive with SUP because it optimizes the target metric
directly, while SUP uses a surrogate (imperfect) regression loss. See Appendix G for detailed results.

4.3 Real-world experiments

We finally evaluate all methods using logs collected from a popular search engine. The dataset
consists of search queries, for which the logging policy randomly (non-uniformly) chooses a slate of
size ` = 5 from a small pre-filtered set of documents of size m ≤ 8. After preprocessing, there are
77 unique queries and 22K total examples, meaning that for each query, we have logged impressions
for many of the available slates. To control the query distribution in our experiment, we generate a
larger dataset by bootstrap sampling, repeatedly choosing a query uniformly at random and a slate
uniformly at random from those shown for this query. Hence, the conditional probability of any slate
for a given query matches the frequencies in the original data.

We consider two page-level metrics: time-to-success (TTS) and UTILITYRATE. TTS measures the
number of seconds between presenting the results and the first satisfied click from the user, defined
as any click for which the user stays on the linked page for sufficiently long. TTS value is capped and
scaled to [0, 1]. UTILITYRATE is a more complex page-level metric of user’s satisfaction. It captures
the interaction of a user with the page as a timeline of events (such as clicks) and their durations. The
events are classified as revealing a positive or negative utility to the user and their contribution is
proportional to their duration. UTILITYRATE takes values in [−1, 1].

We evaluate a target policy based on a logistic regression classifier trained to predict clicks and using
the predicted probabilities to score slates. We restrict the target policy to pick among the slates in our
logs, so we know the ground truth slate-level reward. Since we know the query distribution, we can
calculate the target policy’s value exactly, and measure RMSE relative to this true value.

We compare our estimator (PI) with three baselines similar to those from Sec. 4.1: DM, IPS and
ONPOLICY. DM uses regression trees over roughly 20,000 slate-level features.

Fig. 1 from the introduction shows that PI provides a consistent multiplicative improvement in
RMSE over IPS, which suffers due to high variance. Starting at moderate sample sizes, PI also
outperforms DM, which suffers due to substantial bias. For TTS, the gains over IPS are significant
with p ≤ 3.7 × 10−5 after 2K samples and for DM with p ≤ 1.5 × 10−3 after 20K samples. For
UTILITYRATE, the improvements on IPS are significant with p < 10−8 at 60K examples, and over
DM with p ≤ 4.3× 10−7 after 20K examples. The complete set of p-values is in Appendix E.

5 Discussion

In this paper we have introduced a new assumption (ADA), a new estimator (PI) that exploits this
assumption, and demonstrated their significant theoretical and practical merits.

In our experiments, we saw examples of bias-variance trade-off with off-policy estimators. At small
sample sizes, the pseudoinverse estimator still has a non-trivial variance. In these regimes, the biased

8



direct method can often be practically useful due to its small variance (if its bias is sufficiently small).
Such well-performing albeit biased estimators can be incorporated into the pseudoinverse estimator
via the doubly-robust approach [8].

Experiments with real-world data in Sec. 4.3 demonstrate that even when ADA does not hold, the
estimators based on ADA can still be applied and tend to be superior to alternatives. We view ADA
similarly to the IID assumption: while it is probably often violated in practice, it leads to practical
algorithms that remain robust under misspecification. Similarly to the IID assumption, we are not
aware of ways for easily testing whether ADA holds.

One promising approach to relax ADA is to posit a decomposition over pairs (or tuples) of slots to
capture higher-order interactions such as diversity. More generally, one could replace slate spaces by
arbitrary compact convex sets, as done in linear bandits. In these settings, the pseudoinverse estimator
could still be applied, but tight sample-complexity analysis is open for future research.

References
[1] Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine Learning

Research, 2002.

[2] Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E Schapire. The nonstochastic multiarmed
bandit problem. SIAM Journal on Computing, 2002.

[3] Erik G Boman and Bruce Hendrickson. Support theory for preconditioning. SIAM Journal on Matrix
Analysis and Applications, 2003.

[4] Léon Bottou, Jonas Peters, Joaquin Quiñonero-Candela, Denis Charles, Max Chickering, Elon Portugaly,
Dipankar Ray, Patrice Simard, and Ed Snelson. Counterfactual reasoning and learning systems: The
example of computational advertising. Journal of Machine Learning Research, 2013.

[5] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton, and Greg Hullender.
Learning to rank using gradient descent. In International Conference on Machine Learning, 2005.

[6] Wei Chu, Lihong Li, Lev Reyzin, and Robert E Schapire. Contextual bandits with linear payoff functions.
In Artificial Intelligence and Statistics, 2011.

[7] Varsha Dani, Thomas P. Hayes, and Sham M. Kakade. The price of bandit information for online
optimization. In Advances in Neural Information Processing Systems, 2008.

[8] Miroslav Dudík, John Langford, and Lihong Li. Doubly robust policy evaluation and learning. In
International Conference on Machine Learning, 2011.

[9] Miroslav Dudík, Dumitru Erhan, John Langford, and Lihong Li. Doubly robust policy evaluation and
optimization. Statistical Science, 2014.

[10] Sarah Filippi, Olivier Cappe, Aurélien Garivier, and Csaba Szepesvári. Parametric bandits: The generalized
linear case. In Advances in Neural Information Processing Systems, 2010.

[11] Daniel G Horvitz and Donovan J Thompson. A generalization of sampling without replacement from a
finite universe. Journal of the American statistical Association, 1952.

[12] Satyen Kale, Lev Reyzin, and Robert E Schapire. Non-stochastic bandit slate problems. In Advances in
Neural Information Processing Systems, 2010.

[13] Ron Kohavi, Roger Longbotham, Dan Sommerfield, and Randal M Henne. Controlled experiments on the
web: survey and practical guide. Knowledge Discovery and Data mining, 2009.

[14] Branislav Kveton, Zheng Wen, Azin Ashkan, and Csaba Szepesvári. Tight regret bounds for stochastic
combinatorial semi-bandits. In Artificial Intelligence and Statistics, 2015.

[15] John Langford and Tong Zhang. The epoch-greedy algorithm for multi-armed bandits with side information.
In Advances in Neural Information Processing Systems, 2008.

[16] John Langford, Alexander Strehl, and Jennifer Wortman. Exploration scavenging. In International
Conference on Machine Learning, 2008.

[17] Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit approach to personalized
news article recommendation. In International Conference on World Wide Web, 2010.

9



[18] Kaare Brandt Petersen, Michael Syskind Pedersen, et al. The matrix cookbook. Technical University of
Denmark, 2008.

[19] Lijing Qin, Shouyuan Chen, and Xiaoyan Zhu. Contextual combinatorial bandit and its application on
diversified online recommendation. In International Conference on Data Mining, 2014.

[20] Tao Qin and Tie-Yan Liu. Introducing LETOR 4.0 datasets. arXiv:1306.2597, 2013.

[21] Paat Rusmevichientong and John N Tsitsiklis. Linearly parameterized bandits. Mathematics of Operations
Research, 2010.

[22] Adith Swaminathan and Thorsten Joachims. Counterfactual risk minimization: Learning from logged
bandit feedback. In International Conference on Machine Learning, 2015.

A Proofs of Theorems 1 and 2

Claim 1. Γµ,x = Eµ[1s1
T
s | x].

Proof. Consider the matrix 1s1
T
s . Its element in the row indexed (j, a) and column indexed (k, a′)

equals

1{sj = a, sk = a′} =


1{sj = a} if j = k and a = a′,
1{sj = a, sk = a′} if j 6= k,
0 otherwise.

The claim follows by taking a conditional expectation with respect to µ.

Proof of Theorem 1. Fix one x for the entirety of the proof. Recall from Sec. 3.1 that

V (x, s) = 1Ts φx .

Let N = |suppµ(· | x)| be the size of the support of µ(· | x) and let M ∈ {0, 1}N×m` denote the
binary matrix with rows 1Ts for each s ∈ suppµ(· | x). Thus Mφx is the vector enumerating V (x, s)
over s for which µ(s | x) > 0. Let Null(M) denote the null space of M and Π be the projection on
Null(M). Let φ?x = (I−Π)φx. Then clearly, Mφx = Mφ?x, and hence, for any s ∈ suppµ(· | x),

V (x, s) = 1Ts φ
?
x . (6)

We will now show that φ?x = Γ†µ,xθµ,x, which will complete the proof.

Recall from Sec. 3.1 that
θµ,x = Γµ,xφx . (7)

Next note that Γµ,x in symmetric positive semidefinite by Claim 1, so

Null(Γµ,x) = {v : vTΓµ,xv = 0} = {v : 1Ts v = 0 for all s ∈ suppµ(· | x)} = Null(M)

where the first step follows by positive semi definiteness of Γµ,x, the second step is from the expansion
of Γµ,x as in Claim 1, and the final step from the definition of M. Since Null(Γµ,x) = Null(M), we
have from Eq. (7) that θx = Γµ,xφ

?
x, but, importantly, this also implies φ?x ⊥ Null(Γµ,x), so by the

definition of the pseudoinverse,
Γ†µ,xθx = φ?x.

This proves Theorem 1, since for any s with µ(s | x) > 0, we argued that V (x, s) = 1Ts φ
?
x =

1Ts Γ†µ,xθx.

Proof of Theorem 2. Note that it suffices to analyze the expectation of a single term in the estimator,
that is ∑

s∈S
π(s | xi)1Ts Γ†µ,xi θ̂i .

First note that E(si,ri)∼µ(·,·|xi)
[
θ̂i
]

= θxi , because

E(si,ri)∼µ(·,·|xi)
[
θ̂i(j, a)

]
= E(si,ri)∼µ(·,·|xi)

[
ri1{sj = a}

]
= θxi(j, a) .

10



The remainder follows by Theorem 1:

E

[∑
s∈S

π(s | xi)1Ts Γ†µ,xi θ̂i

]
= Exi∼D

[∑
s∈S

π(s | xi)1Ts Γ†µ,xi E(si,ri)∼µ(·,·|xi)
[
θ̂i
]]

= Exi∼D

[∑
s∈S

π(s | xi)1Ts Γ†µ,xiθxi

]

= Exi∼D

[∑
s∈S

π(s | xi)V (xi, s)

]
= V (π) .

B Proof of Theorem 3

Proof. The proof is based on an application of Bernstein’s inequality to the centered sum
n∑
i=1

[
qTπ,xiΓ

†
µ,xi θ̂i − V (π)

]
.

The fact that this quantity is centered is directly from Theorem 2. We must compute both the second
moment and the range to apply Bernstein’s inequality. By independence, we can focus on just one
term, so we will drop the subscript i. First, bound the variance:

Var
[
qTπ,xΓ

†
µ,xθ̂

]
≤ Eµ

[(
qTπ,xΓ

†
µ,xθ̂

)2
]

= Eµ
[(

qTπ,xΓ
†
µ,x r1s

)2]
≤ Eµ

[(
qTπ,xΓ

†
µ,x1s

)2]
= Ex∼D

[
qTπ,xΓ

†
µ,x Es∼µ(·|x)

[
1s1

T
s

]
Γ†µ,xqπ,x

]
= Ex∼D

[
qTπ,xΓ

†
µ,xΓµ,xΓ

†
µ,xqπ,x

]
= Ex∼D

[
qTπ,xΓ

†
µ,xqπ,x

]
= σ2 .

Thus the per-term variance is at most σ2. We now bound the range, again focusing on one term,∣∣∣qTπ,xΓ†µ,xθ̂ − V (π)
∣∣∣ ≤ ∣∣∣qTπ,xΓ†µ,xθ̂∣∣∣+ 1

=
∣∣qTπ,xΓ†µ,xr1s

∣∣+ 1

≤
∣∣qTπ,xΓ†µ,x1s

∣∣+ 1

≤ ρ+ 1

The first line here is the triangle inequality, coupled with the fact that since rewards are bounded
in [−1, 1], so is V (π). The second line is from the definition of θ̂, while the third follows because
r ∈ [−1, 1]. The final line follows from the definition of ρ.

Now, we may apply Bernstein’s inequality, which says that for any δ ∈ (0, 1), with probability at
least 1− δ, ∣∣∣∣∣

n∑
i=1

[
qTπ,xiΓ

†
µ,xi θ̂i − V (π)

]∣∣∣∣∣ ≤√2nσ2 ln(2/δ) +
2(ρ+ 1) ln(2/δ)

3
.

The theorem follows by dividing by n.

C Pseudo-inverse estimator when π = µ

In this section we show that when the target policy coincides with logging (i.e., π = µ), we have
σ2 = ρ = 1, i.e., the bound of Theorem 3 is independent of the number of actions and slots. Indeed,

11



in Claim 3 we will see that the estimator actually simplifies to taking an empirical average of rewards
which are bounded in [−1, 1]. Before proving Claim 3 we prove one supporting claim:

Claim 2. For any policy µ and context x, we have qTµ,xΓ
†
µ,x1s = 1 for all s ∈ suppµ(· | x).

Proof. To simplify the exposition, write q and Γ instead of a more verbose qµ,x and Γµ,x.

The bulk of the proof is in deriving an explicit expression for Γ†. We begin by expressing Γ in a
suitable basis. Since Γ is the matrix of second moments and q is the vector of first moments of 1s,
the matrix Γ can be written as

Γ = V + qqT

where V is the covariance matrix of 1s, i.e., V := Es∼µ(·|x)

[
(1s − q)(1s − q)T

]
. Assume that the

rank of V is r and consider the eigenvalue decomposition of V

V =

r∑
i=1

λiuiu
T
i = UΛUT ,

where λi > 0 and vectors ui are orthonormal; we have grouped the eigenvalues into the diagonal
matrix Λ := diag(λ1, . . . , λr) and eigenvectors into the matrix U := (u1 u2 . . . ur).

We next argue that q 6∈ Range(V). To see this, note that the all-ones-vector 1 is in the null space of
V because, for any valid slate s, we have 1Ts 1 = ` and thus also for the convex combination q we
have qT1 = `, which means that

1TV1 = Es∼µ(·|x)

[
1T (1s − q)(1s − q)T1

]
= 0 .

Now, since 1 ⊥ Range(V) and qT1 = `, we have that q 6∈ Range(V). In particular, we can write
q in the form

q =

r∑
i=1

βiui + αn = (U n)

(
β
α

)
(8)

where α 6= 0 and n ∈ Null(V) is a unit vector. Note that n ⊥ ui since ui ⊥ Null(V). Thus, the
second moment matrix Γ can be written as

Γ = V + qqT = (U n)

(
Λ + ββT αβ
αβT α2

)
(U n)

T
. (9)

Let Q ∈ R(r+1)×(r+1) denote the middle matrix in the factorization of Eq. (9):

Q :=

(
Λ + ββT αβ
αβT α2

)
. (10)

This matrix is a representation of Γ with respect to the basis {u1, . . . ,ur,n}. Since q 6∈ Range(V),
the rank of Γ and that of Q is r + 1. Thus, Q is invertible and

Γ† = (U n) Q−1 (U n)
T
. (11)

To obtain Q−1, we use the following identity (see [18]):(
A11 A12

A21 A22

)−1

=

(
M−1 −M−1A12A

−1
22

−A−1
22 A21M

−1 A−1
22 A21M

−1A12A
−1
22 + A−1

22

)
, (12)

where M := A11 −A12A
−1
22 A21 is the Schur complement of A22. The identity of Eq. (12) holds

whenever A22 and its Schur complement M are both invertible. In the block representation of
Eq. (10), we have A22 = α2 6= 0 and

M = (Λ + ββT )− (αβ)α−2(αβT ) = Λ ,

so Eq. (12) can be applied to obtain Q−1:

Q−1 =

(
Λ + ββT αβ
αβT α2

)−1

=

(
Λ−1 −Λ−1(αβ)α−2

−α−2(αβT )Λ−1 α−2(αβT )Λ−1(αβ)α−2 + α−2

)
=

(
Λ−1 −α−1Λ−1β

−α−1βTΛ−1 α−2(1 + βTΛ−1β)

)
. (13)

12



Next, we will evaluate Γ†q, using the factorizations in Eqs. (11) and (8), and substituting Eq. (13)
for Q−1:

Γ†q = (U n) Q−1 (U n)
T

(U n)

(
β
α

)
= (U n) Q−1

(
β
α

)
= (U n)

(
Λ−1β −Λ−1β

−α−1βTΛ−1β + α−1(1 + βTΛ−1β)

)
= (U n)

(
0
α−1

)
= α−1n .

To finish the proof, we consider any s ∈ suppµ(· | x) and consider the decomposition of 1s in the
basis {u1, . . . ,ur,n}. First, note that (1s − q) ⊥ Null(V) since

Null(V) =
{
v : Es∼µ(·|x)

[(
(1s−q)Tv

)2]
= 0
}

=
{
v : (1s−q)Tv = 0 for all s ∈ suppµ(·|x)

}
.

Thus, (1s − q) ∈ Range(V). Therefore, we obtain

qTΓ†µ,x1s = α−1nT1s = α−1nT (1s − q) + α−1nTq = 0 + α−1α = 1 ,

where the third equality follows because (1s − q) ⊥ n and the decomposition in Eq. (8) shows that
nTq = α.

Claim 3. If π = µ then σ2 = ρ = 1 and V̂PI(π) = V̂PI(µ) = 1
n

∑n
i=1 ri.

Proof. From Claim 2
qTµ,xΓ

†
µ,xqµ,x = Es∼µ(·|x)[q

T
µ,xΓ

†
µ,x1s] = 1 .

Taking expectation over x then yields σ2 = 1. Equality ρ = 1 follows immediately from plugging
Claim 2 into the definition of ρ. The final statement of Claim 3 follows by applying Claim 2 to a
single term of V̂PI(µ):

qTµ,xiΓ
†
µ,xi ri1si = ri .

D Proof of Proposition 1

For a given logging policy µ and context x, let

ρ̄µ,x := sup
s∈suppµ(·|x)

1Ts Γ†µ,x1s .

This quantity can be viewed as a norm of Γ†µ,x with respect to the set of slates chosen by µ with
non-zero probability. It can be used to bound σ2 and ρ, and thus to bound an error of V̂PI:
Proposition 2. For any logging policy µ and target policy π that is absolutely continuous with
respect to µ, we have

σ2 ≤ ρ ≤ sup
x
ρ̄µ,x .

Proof. Recall that

σ2 = Ex∼D
[
qTπ,xΓ

†
µ,xqπ,x

]
, ρ = sup

x

sup
s∈suppµ(·|x)

∣∣qTπ,xΓ†µ,x1s

∣∣ .
To see that σ2 ≤ ρ note that

qTπ,xΓ
†
µ,xqπ,x = Es∼π(·|x)

[
qTπ,xΓ

†
µ,x1s

]
≤ ρ

where the last inequality follows by the absolute continuity of π with respect to µ. It remains to show
that ρ ≤ supx ρ̄µ,x.

13



First, by positive semi-definiteness of Γ†µ,x and from the definition of ρ̄µ,x, we have that for any slates
s, s′ ∈ suppµ(· | x) and any z ∈ {−1, 1}

z1Ts′Γ
†
µ,x1s ≤

1Ts Γ†µ,x1s + 1Ts′Γ
†
µ,x1s′

2
≤ max{1Ts Γ†µ,x1s, 1Ts′Γ

†
µ,x1s′} ≤ ρ̄µ,x .

Therefore, for any π absolutely continuous with respect to µ and any s ∈ suppµ(· | x), we have∣∣qTπ,xΓ†µ,x1s

∣∣ = max
z∈{−1,1}

Es′∼π(·|x)

[
z1Ts′Γ

†
µ,x1s

]
≤ ρ̄µ,x .

Taking a supremum over x and s ∈ suppµ(· | x), we obtain ρ ≤ supx ρ̄µ,x.

We next derive bounds on ρ̄µ,x for uniformly-random policies in the ranking and cartesian product
examples. Then we prove a translation theorem, which allows translating of the bound for uniform
distribution into a bound for pairwise κ-uniform distributions. Finally, we put these results together
to prove Prop. 1.

D.1 Bounds for uniform distributions

Let 1j ∈ R`m be the vector that is all-ones on the actions in the j-th position and zeros elsewhere.
Similarly, let 1a ∈ R`m be the vector that is all-ones on the action a in all positions and zeros
elsewhere. Finally, let 1 ∈ R`m be the all-ones vector. We also use Ij = diag(1j) to denote the
diagonal matrix with all-ones on the actions in the j-th position and zeros elsewhere.

Proposition 3. Consider the product slate space where S(x) = A1(x)×· · ·×A`(x) with |Aj(x)| =
mj . Let ν be the uniform exploration policy, i.e., ν(s | x) = 1/|S(x)|. Then ρ̄ν,x =

∑
jmj − `+ 1

and

Γ†ν,x =
∑̀
j=1

(
mjIj − 1j1

T
j

)
+

∑̀
j=1

1

mj

−2∑
j,k

1j1k
mjmk

.

For any policy π, any s ∈ S(x), and any r ∈ [−1, 1] we then have

qTπ,xΓ
†
ν,xr1s = r ·

∑̀
j=1

π(sj | x)

1/mj
− `+ 1

 . (14)

Proof. Throughout the proof we will write Γ instead of the more verbose Γν,x and similarly ρ̄ instead
of ρ̄ν,x. We will construct an explicit eigendecomposition of Γ, which will immediately yield Γ†.
The remaining statements will follow by a direct calculation. From the definition of Γ, we obtain

Γ =
∑̀
j=1

Ij
mj

+
∑
j,k

1j1
T
k

mjmk
−
∑
j

1j1
T
j

m2
j

. (15)

Let v =
∑
j 1j/mj so that the second term on the right-hand side of Eq. (15) corresponds to vvT .

Thus, we can write

Γ = ‖v‖22 ·
vvT

‖v‖22
+
∑̀
j=1

1

mj

(
Ij −

1j1
T
j

mj

)
. (16)

We argue that this constitutes an eigendecomposition. Let Pj := Ij − 1j1
T
j /mj denote the terms

appearing in the sum on the right-hand side of Eq. (16). Note that Pj’s are projection matrices,
i.e., their eigenvalues are in {0, 1}. Moreover, their ranges are orthogonal to each other, because
Range(Pj) is a subset of the span of the coordinates corresponding to the slot j. Finally, note that v
is orthogonal to all of the ranges, because

vTPjv = vT Ijv − (vT1j)
2/mj = 1/mj − 1/mj = 0 .

14



This shows that Eq. (16) is an eigendecomposition of Γ, so

Γ† = ‖v‖−2
2 ·

vvT

‖v‖22
+
∑̀
j=1

mj

(
Ij −

1j1
T
j

mj

)
(17)

= ‖v‖−4
2 · vvT +

∑̀
j=1

(
mjIj − 1j1

T
j

)

=

∑̀
j=1

1

mj

−2∑
j,k

1j1
T
k

mjmk
+
∑̀
j=1

(
mjIj − 1j1

T
j

)
,

where the last equality follows from the definition of v. It remains to derive ρ̄ and Eq. (14). Both will
follow by analyzing the expression 1Ts′Γ

†1s for s, s′ ∈ S(x). To begin, note that 1Tj 1s = 1 since any
valid slate chooses exactly one action in each position. Thus,

1Ts′Γ
†1s =

∑̀
j=1

1

mj

−2∑
j,k

(1Ts′1j)(1
T
k 1s)

mjmk
+
∑̀
j=1

(
mj1

T
s′Ij1s − (1Ts′1j)(1

T
j 1s)

)

=

∑̀
j=1

1

mj

−2∑
j,k

1

mjmk
+
∑̀
j=1

(
mj1{s′j = sj} − 1

)

=

∑̀
j=1

1

mj

−2∑̀
j=1

1

mj

2

+
∑̀
j=1

1{s′j = sj}
1/mj

− `

= 1 +
∑̀
j=1

1{s′j = sj}
1/mj

− ` .

Now the value of ρ̄ follows by setting s′ = s, and Eq. (14) follows by taking an expectation over
s′ ∼ π(· | x).

Proposition 4. Consider the ranking setting where for each x there is a set A(x) such that Aj(x) =
A(x) and where all slates s ∈ A(x)` without repetitions are legal. Let ν denote the uniform
exploration policy over these slates. If ` < m, then ρ̄ν,x = m`− `+ 1 and

Γ†ν,x =

(
1

`2
− m− 1

m(m− `)

)
· 11T + (m− 1)I− m− 1

m

∑
j

1j1
T
j +

m− 1

m− `
∑
a

1a1
T
a ,

and for ` = m, we have ρ̄ν,x = m2 − 2m+ 2 and

Γ†ν,x =
1

m
· 11T + (m− 1)I− m− 1

m

∑
j

1j1
T
j −

m− 1

m

∑
a

1a1
T
a .

For ` = m, we have for any policy π, any s ∈ S(x), and any r ∈ [−1, 1] that

qTπ,xΓ
†
ν,xr1s = r ·

∑̀
j=1

π(sj | x)

1/(m− 1)
−m+ 2

 . (18)

Proof. Throughout the proof we will write Γ instead of the more verbose Γν,x. Note that for ranking
and the uniform distribution we have

Γ (j, a; k, a′) =


1
m if j = k and a = a′

1
m(m−1) if j 6= k and a 6= a′

0 otherwise.

15



Thus, for any z

zTΓz =
∑
j,a

z2
j,a

m
+

1

m(m− 1)

∑
j 6=k,a 6=a′

zj,azk,a′

=
1

m
‖z‖22 +

1

m(m− 1)

(zT1)2 −
∑
j

(zT1j)
2 −

∑
a

(zT1a)2 + ‖z‖22


=

1

m(m− 1)

(zT1)2 −
∑
j

(zT1j)
2 −

∑
a

(zT1a)2 +m‖z‖22

 . (19)

Let 1J ∈ R` and 1A ∈ Rm be all-ones vectors in the respective spaces and IJ ∈ R`×` and
IA ∈ Rm×m be identity matrices in the respective spaces. We can rewrite the quadratic form
described by Γ as

m(m− 1)Γ = 11T −
∑
j

1j1
T
j −

∑
a

1a1
T
a +mI

= (1J 1TJ )⊗ (1A1TA )− IJ ⊗ (1A1TA )− (1J 1TJ )⊗ IA +m · IJ ⊗ IA

= `m · 1J 1TJ
`
⊗ 1A1TA

m
−m · IJ ⊗

1A1TA
m
− ` · 1J 1TJ

`
⊗ IA +m · IJ ⊗ IA

= `(m− 1) · 1J 1TJ
`
⊗ 1A1TA

m
−m · IJ ⊗

(
1A1TA
m
− IA

)
− ` · 1J 1TJ

`
⊗
(

IA −
1A1TA
m

)

= `(m− 1) · 1J 1TJ
`
⊗ 1A1TA

m

+m ·
(

IJ −
1J 1TJ
`

)
⊗
(

IA −
1A1TA
m

)
+ (m− `) · 1J 1TJ

`
⊗
(

IA −
1A1TA
m

)
. (20)

Next, we would like to argue that Eq. (20) is an eigendecomposition. For this, we just need to show
that each of the three Kronecker products in Eq. (20) equals a projection matrix in R`m, and that the
ranges of the projection matrices are orthogonal. The first property follows, because if P1 and P2 are
projection matrices then so is P1 ⊗P2. The second property follows, because for P1,P

′
1 (square of

the same dimension) and P2,P
′
2 (square of the same dimension) such that either ranges of P1 and

P′1 are orthogonal or ranges of P2 and P′2 are orthogonal, we obtain that the ranges of P1 ⊗P2 and
P′1 ⊗P′2 are orthogonal.

Now we are ready to derive the pseudo-inverse. We distinguish two cases.

Case ` < m: We directly invert the eigenvalues in Eq. (20) to obtain

Γ† =
m

`
· 1J 1TJ

`
⊗ 1A1TA

m
+ (m− 1) ·

(
IJ −

1J 1TJ
`

)
⊗
(

IA −
1A1TA
m

)
+

m− 1

1− `/m ·
1J 1TJ
`
⊗
(

IA −
1A1TA
m

)

=
1

`2
· 11T + (m− 1) ·

(
IJ +

1J 1TJ
m− `

)
⊗
(

IA −
1A1TA
m

)
=

(
1

`2
− m− 1

m(m− `)

)
· 11T + (m− 1)I− m− 1

m

∑
j

1j1
T
j +

m− 1

m− `
∑
a

1a1
T
a .

16



Recall that Eq. (20) involves m(m− 1)Γ. To obtain ρ̄, we again evaluate 1Ts′Γ
†1s for any s ∈ S(x).

We write As for the set of actions appearing on the slate s:

1Ts′Γ
†1s =

(
1

`2
− m− 1

m(m− `)

)
· (1Ts′1)(1T1s) + (m− 1)1Ts′1s −

m− 1

m

∑
j

(1Ts′1j)(1
T
j 1s)

+
m− 1

m− `
∑
a

(1Ts′1a)(1Ta 1s)

=

(
1

`2
− m− 1

m(m− `)

)
· `2 +

∑
j

1{s′j = sj}
1/(m− 1)

− m− 1

m
· `

+
m− 1

m− `
∑
a

1{a ∈ As′}1{a ∈ As} (21)

= 1− (m− 1)(`2 +m`− `2)

m(m− `) +
∑
j

1{s′j = sj}
1/(m− 1)

+
m− 1

m− ` · |As′ ∩As|

= 1− m− 1

m− ` · `+
∑
j

1{s′j = sj}
1/(m− 1)

+
m− 1

m− ` · |As ∩As′ | ,

where Eq. (21) follows because 1T1s = ` and 1Tj 1s = 1 for any valid slate s. By setting s′ = s, we
obtain ρ̄ = 1 + `(m− 1) = m`− `+ 1.

Case ` = m: Again, we directly invert the eigenvalues in Eq. (20) to obtain

Γ† =
1

`2
· 11T + (m− 1) ·

(
IJ −

1J 1TJ
`

)
⊗
(

IA −
1A1TA
m

)
=

1

m
· 11T + (m− 1)I− m− 1

m

∑
j

1j1
T
j −

m− 1

m

∑
a

1a1
T
a .

We finish the theorem by evaluating 1Ts′Γ
†1s:

1Ts′Γ
†1s =

1

m
· (1Ts′1)(1T1s) + (m− 1)1Ts′1s −

m− 1

m

∑
j

(1Ts′1j)(1
T
j 1s)

− m− 1

m

∑
a

(1Ts′1a)(1Ta 1s)

=
1

m
·m2 +

∑
j

1{s′j = sj}
1/(m− 1)

− m− 1

m
·m− m− 1

m
·m

=
∑
j

1{s′j = sj}
1/(m− 1)

−m+ 2 .

We obtain ρ̄ = m2 − 2m + 2 by setting s′ = s and Eq. (18) by taking an expectation over
s′ ∼ π(· | x).

D.2 Translation theorem and proofs for pairwise κ-uniform distributions

In this section we derive bounds on ρ̄µ,x when µ is not necessarily uniform, but only pairwise κ-
uniform. The main component of the result is a translation theorem relating ρ̄µ,x to ρ̄ν,x for arbitrary
µ and ν. This lets us translate the bounds for uniform distributions in Appendix D.1 into bounds for
pairwise κ-uniform distributions.
Theorem 4. Let µ and ν be arbitrary stochastic policies such that µ is absolutely continuous with
respect to ν. Then

κρ̄µ,x ≤ ρ̄ν,x , where κ = min

{
µ(sj = a, sk = a′ | x)

ν(sj = a, sk = a′ | x)
: ν(sj = a, sk = a′ | x) > 0

}
.

17



Proof. We consider a fixed x throughout the proof and to abbreviate the set of tuples (j, a, k, a′) over
which the minimum in the theorem is taken, we define the set

I :=
{

(j, a) : ν(sj = a | x) > 0
}

and a symmetric relation ∼ on I by

(j, a) ∼ (k, a′) if and only if j 6= k and ν(sj = a, sk = a′ | x) > 0 .

By Claim 1, Γµ,x = Eµ[1Ts 1s | x], so the assumption that µ is absolutely continuous with respect to
ν implies that the Null(Γν,x) is a subset of Null(Γµ,x):

Null(Γν,x) = {v : vTΓν,xv = 0} = {v : 1Ts v = 0 for all s ∈ supp ν(· | x)}
⊆ {v : 1Ts v = 0 for all s ∈ suppµ(· | x)} = Null(Γµ,x). (22)

The proof is based on analyzing the generalized maximum eigenvalue defined as

λmax(Γν,x,Γµ,x) := max
z⊥Null(Γµ,x), z6=0

zTΓν,xz

zTΓµ,xz
.

Specifically,

ρ̄µ,x = sup
s:µ(s|x)>0

1Ts Γ†µ,x1s = sup
s:µ(s|x)>0

(
1Ts Γ†ν,x1s ·

1Ts Γ†µ,x1s

1Ts Γ†ν,x1s

)

≤
(

sup
s:ν(s|x)>0

1Ts Γ†ν,x1s

)
·
(

sup
s:µ(s|x)>0

1Ts Γ†µ,x1s

1Ts Γ†ν,x1s

)
(23)

≤ ρ̄ν,x ·
(

sup
z⊥Null(Γµ,x), z6=0

zTΓ†µ,xz

zTΓ†ν,xz

)
(24)

≤ ρ̄ν,x ·
(

sup
z⊥Null(Γµ,x), z6=0

zTΓν,xz

zTΓµ,xz

)
= ρ̄ν,x · λmax(Γν,x,Γµ,x) . (25)

Eq. (23) follows because Null(Γν,x) ⊆ Null(Γµ,x). Eq. (24) follows because, by Eq. (22), 1s ⊥
Null(Γµ,x) for all s ∈ suppµ(· | x). Finally, Eq. (25) follows by Claim 4 and the definition of
generalized eigenvalue.

To finish the theorem, it remains to upper bound the generalized eigenvalue λmax(Γν,x,Γµ,x). To that
end, we will apply Claim 5, which means we must construct complex-valued matrices U,V ∈ C`m×r
for some r such that Γν,x = UUT and Γµ,x = VVT . Recall that

Γµ,x(j, a; k, a′) =


µ(sj = a | x) if j = k and a = a′,
µ(sj = a, sk = a′ | x) if j 6= k,
0 otherwise.

Notice that for any fixed j, a and k 6= j, we have
∑
a′ µ(sj = a, sk = a′ | x) = µ(sj = a | x). This

means that for a fixed (j, a):∑
(k,a′): (k,a′)∼(j,a)

µ(sj = a, sk = a′ | x) = (`− 1)µ(sj = a | x) .

Using this fact and the definition of Γµ,x, we can write

Γµ,x =
1

2

∑
(j,a)∼(k,a′)

eja,ka′e
T
ja,ka′µ(sj = a, sk = a′ | x) − `− 3

2

∑
(j,a)∈I

ejae
T
jaµ(sj = a | x) .

Here eja,ka′ ∈ {0, 1}`m is a vector with two non-zeros, one in the (j, a) coordinate and one in the
(k, a′) coordinate, and eja is defined similarly, with just one non-zero. The notation

∑
(j,a)∼(k,a′)

denotes first summing over all pairs (j, a) and then summing over all pairs (k, a′) with satisfying the
∼ relations. Thus each pair is counted twice.

18



Using this decomposition, we can write Γµ,x = VVT where V has one column for each (j, a, k, a′)

tuple such that (j, a) ∼ (k, a′), with vector
√
µ(sj = a, sk = a′ | x)/2 · eja,ka′ , and one col-

umn for each (j, a) ∈ I, with vector
√
−(`− 3)µ(sj = a | x)/2 · eja. Similarly, we can write

Γν,x = UUT with the same decomposition but using the coefficients
√
ν(sj = a, sk = a′ | x)/2

and
√
−(`− 3)ν(sj = a | x)/2 on the corresponding vectors. Notice that these matrices may have

complex entries, since ` can be larger than 3.

Finally, we can write W as a diagonal matrix with entries
√

ν(sj=a|x)
µ(sj=a|x) and

√
ν(sj=a,sk=a′|x)
µ(sj=a,sk=a′|x) ; note

that if any of the denominators is zero then κ = 0 and the theorem holds, so we are assuming that all
denominators are non-zero. Aligning coordinates, it is easy to see that U = VW, and by Claim 5,
we have

λmax(Γν,x,Γµ,x) ≤ ‖W‖22 ≤ max

{
max

(j,a)∈I

ν(sj = a | x)

µ(sj = a | x)
, max
(j,a)∼(k,a′)

ν(sj = a, sk = a′ | x)

µ(sj = a, sk = a′ | x)

}
= max

{
ν(sj = a, sk = a′ | x)

µ(sj = a, sk = a′ | x)
: ν(sj = a, sk = a′ | x) > 0

}
= κ−1.

Plugging this into Eq. (25) proves the theorem.

Proof of Prop. 1. The proposition follows by Prop. 2 with the ρ̄µ,x bounded by Theorem 4, using the
definition of pairwise κ-uniform distributions and the values of ρ̄ν,x obtained in Props. 3 and 4.

D.3 Supporting claims

Claim 4. Let A,B be two symmetric positive semi-definite matrices with Null(A) ⊆ Null(B). Then

max
z⊥Null(B), z6=0

zTB†z

zTA†z
≤ max

z⊥Null(B), z6=0

zTAz

zTBz
.

Proof. Let U be the square root of matrix A, i.e., U is a symmetric positive semidefinite matrix
with the same eigenvectors as A, but with eigenvalues that are square root of the corresponding
eigenvalues of A. Similarly, let V be the square root of matrix B. Thus, we have A = UU and
A† = U†U† and similarly for B and V. Let ΠA = U†U = UU† denote the projection onto the
range of A and ΠB denote the projection onto the range of B. Since Null(A) ⊆ Null(B), we have
Range(A) ⊇ Range(B). We prove the claim as follows:

max
z⊥Null(B), z6=0

zTB†z

zTA†z
= max

z⊥Null(B), z6=0

zT U†U B† UU† z

zT U†U† z
(26)

≤ max
y 6=0

yTU B† Uy

yTy
(27)

= max
y 6=0

yTU V†V† Uy

yTy
= max

y: ‖y‖2=1
‖V†Uy‖22 (28)

= max
y: ‖y‖2=1

‖UV†y‖22 (29)

= max
y 6=0

yTV†U UV†y

yTy

= max
y⊥Null(B),y 6=0

yT V†AV† y

yTy
(30)

= max
z⊥Null(B), z6=0

zTV V†AV† Vz

zT VV z
(31)

= max
z⊥Null(B), z6=0

zTAz

zTBz
. (32)

In Eq. (26) we substitute U†U† = A† and also use the fact that UU† = ΠA and ΠAz = z because
z ∈ Range(B) ⊆ Range(A). Eq. (27) is obtained by substituting y = U†z and relaxing the

19



maximization to be over y 6= 0. In Eq. (28) we substitute V†V† = B†. In Eq. (29) we use the fact
that the operator norm of a matrix and its transpose are equal. In Eq. (30) we substitute A = UU
and note that it suffices to consider y ⊥ Null(B) because Null(V†AV†) = Null(B). In Eq. (31)
we use the fact that z 7→ Vz is a bijection on Range(B), which is an orthogonal complement to
Null(B), so we can substitute Vz = y. Finally, in Eq. (32) we substitute B = VV and use the fact
that V†V = ΠB and ΠBz = z because z ∈ Range(B).

The next claim is due to Boman and Hendrickson [3], although we provide a simple proof for
completeness.
Claim 5 (Boman and Hendrickson [3]). Let A,B ∈ Rd×d be positive semidefinite matrices with
Null(B) ⊆ Null(A). Let U,V ∈ Cd×r for some r be any two matrices such that A = UUT and
B = VVT . Let W ∈ Cr×r satisfy U = VW. Then,

λmax(A,B) = max
z⊥Null(B), z6=0

zTAz

zTBz
≤ ‖W‖22 .

Proof.

λmax(A,B) = max
z⊥Null(B), z6=0

zTAz

zTBz
= max

z⊥Null(B), z6=0

zTUUT z

zTVVT z
= max

z⊥Null(B), z 6=0

zTVWWTVT z

zTVVT z

≤ max
y 6=0

yTWWTy

yTy
= ‖W‖22 .

E The p-values for plots in Figures 1 and 2

Table 1: The p-values of a t-test between PI and IPS, and PI and DM on search engine data (Fig. 1).
Results where DM performs better than PI are omitted.

number of PI vs IPS PI vs DM
samples (n) TTS UTILITYRATE TTS UTILITYRATE

200 2.5× 10−1 4.7× 10−3 — —
600 3.8× 10−2 1.6× 10−3 — —

2 000 1.3× 10−5 2.0× 10−2 — —
6 000 3.7× 10−5 2.0× 10−2 — 1.8× 10−2

20 000 1.2× 10−5 1.9× 10−2 1.5× 10−3 4.3× 10−7

60 000 4.5× 10−6 < 10−8 8.1× 10−4 < 10−8

Table 2: The p-values of a t-test between PI and IPS, and PI and DM on semi-synthetic data (Fig. 2).
Results where DM performs better than PI are omitted.

number of ` = 5, m = 20, α = 0 ` = 10, m = 20, α = 0 ` = 5, m = 20, α = 10
samples (n) PI vs wIPS PI vs DM PI vs wIPS PI vs DM PI vs wIPS PI vs DM

200 < 10−8 — < 10−8 — < 10−8 —
600 < 10−8 — < 10−8 — 1.0× 10−8 —

2 000 < 10−8 — < 10−8 — < 10−8 —
6 000 < 10−8 — < 10−8 — < 10−8 —

20 000 < 10−8 7.3× 10−2 < 10−8 — < 10−8 —
60 000 < 10−8 5.6× 10−3 < 10−8 — < 10−8 —

200 000 < 10−8 6.0× 10−5 < 10−8 6.1× 10−2 < 10−8 4.4× 10−4

600 000 < 10−8 < 10−8 < 10−8 7.3× 10−4 < 10−8 7.5× 10−5

F Additional results for off-policy evaluation on semi-synthetic data

In Figure 3, we compare the performance of several variants of estimators in each family of baseline
approaches (DM and IPS) plotted in Fig. 2. For the DM family of approaches, variants differ in

20



102 103 104 105 106

Number of logged samples (n)

10−4

10−3

10−2

10−1

100

R
M

SE

DM-Ridge
DM-Lasso
DM-Tree

5 slots, 20 actions per slot

102 103 104 105 106

Number of logged samples (n)

10−4

10−3

10−2

10−1

100

R
M

SE

IPS
wIPS

5 slots, 20 actions per slot

Figure 3: RMSE of value estimators for an increasing logged dataset under a uniform logging policy.
(m, l) = (20, 5), α = 0. Left: DM methods, Right: IPS estimators.

102 103 104 105 106

Number of logged samples (n)

10−4

10−3

10−2

10−1

100

101

102

R
M

SE

PI (α = 0)
wIPS (α = 0)
PI (α = 1)
wIPS (α = 1)
PI (α = 10)
wIPS (α = 10)

5 slots, 20 actions per slot, PI vs. IPS

Figure 4: RMSE curves for pseudoinverse estimator and wIPS, (m, `) = (20, 10), α ∈ {0, 1, 10}.

their choice of regression predictor r̂(x, s) that maps f(x, s) to V (x, s). f(x, s) is defined as the
concatenation of document features f(x, sj) for all these variants. Regression hyper-parameters are
selected via five-fold cross validation with each fold containing disjoint queries.

1. DM-tree: r̂(x, s) is implemented by a regression tree; maximum tree depth is the only
hyper-parameter that is tuned.

2. DM-ridge: r̂(x, s) is obtained by ridge regression; `2-regularization cross-validated

3. DM-lasso: r̂(x, s) is obtained by lasso regression; `1-regularization cross-validated

For the IPS family, we compare standard inverse propensity scoring (IPS) against the weighted variant
(wIPS). As theory predicts, RMSE of IPS is worse than that of wIPS since wIPS achieves a more
favorable bias-variance trade-off.

Figure 4 shows a relative comparison of pseudoinverse estimator and IPS estimators as the discrepancy
between the logging policy and the target policy is varied. The logging policy is as described
in Section 4.1, parametrized by α ≥ 0. α = 0 yields a uniform random logging policy and
α→∞ corresponds to a deterministic policy. As α is varied in {0, 1, 10}, pseudoinverse estimator
remains stable while wIPS improves—this improvement is because the target policy and predtitle (the
deterministic extreme of µ) overlap and the inverse propensity scores are better scaled and induce
lower variance.

Finally, we also compare to the hypothetical semi-bandit approach, which uses more information
than assumed by PI, IPS and DM. Semi-bandits assume that intrinsic values φxi(j, sij) are observed
for j ≤ `. Given these values, as defined in Example 3, i.e., φxi(j, sij) =

(
2rel(xi,sij) − 1

) /
21



102 103 104 105 106

Number of logged samples (n)

10−4

10−3

10−2

10−1

100

R
M

SE

SB
wSB

5 slots, 20 actions per slot

Figure 5: RMSE curves for SB using IPS estimator per slot (SB) and wIPS estimators (wSB),
(m, `) = (20, 5), α = 0.

0.0 0.2 0.4 0.6 0.8 1.0
Number of logged samples (n)

0.0

0.2

0.4

0.6

0.8

1.0

R
M

S
E

103 104 105

10−3

10−2

10−1

100 5 slots; 20 actions/slot; uniform µ

103 104 105

10 slots; 20 actions/slot; uniform µ

wIPS PI DM wSB OnPolicy

103 104 105

5 slots; 20 actions/slot; non-uniform µ

Figure 6: RMSE under uniform logging (α = 0) and non-uniform logging (α = 10).

log2(j + 1)DCG?(xi), the estimator V̂wSB sums wIPS estimates across slots:

V̂wSB(π) :=
∑̀
j=1

[ n∑
i=1

φxi(j, sij) ·
π(sij | xi)
µ(sij | xi)

/( n∑
i=1

π(sij | xi)
µ(sij | xi)

)]
.

It is only asymptotically unbiased, but it outperforms the unbiased variant based on standard IPS for
each slot, as seen in Figure 5.

As Fig. 6 shows, the wSB approach requires somewhere between 4x and 10x less data than PI. So, in
those cases when additional per-action feedback which relates to the page-level reward according
to the semi-bandit model is available, this method is clearly preferred over PI. When the available
feedback does not obviously satisfy the semibandit model, however, this approach will exhibit bias
like the direct method. For instance, no obvious feedback of this nature was available in the search
engine data from Section 4.3 and hence we could not evaluate the semi-bandits baseline in that
setting.

G Comparison of pointwise learning-to-rank approaches for off-policy
optimization

Companion tables for Section 4.2 are provided in Tables 3, 4 and 5. Supervised pointwise learning-to-
rank (L2R) algorithms typically regress to some monotone function of annotated relevance judgements
rel(x, a). Direct regression to rel(x, a) gives the SUP-Rel approach, while regressing to 2rel(x,a) − 1
(which is well motivated by the fact that these methods are eventually trying to optimize NDCG)
gives the SUP-Gain approach. Our PI-OPT approach is outlined in Section 4.2.

We studied the behavior of PI-OPT for three different model classes: decision tree regression, lasso
and ridge regression. Since the MQ2008 dataset was already divided into 5 folds, for each fold
we used the validation fold to tune hyper-parameters. After re-training on the train and validate

22



102 103 104 105

Number of logged samples (n)

0.44

0.45

0.46

0.47

N
D

C
G

SUP
PI-OPT

5 slots, 20 actions per slot, Ranker=tree

Figure 7: Test NDCG of off-policy optimization.

folds, we report the test fold NDCG. This procedure is repeated for 10 independent runs of n = 105

samples collected from the uniform random logging policy. Recall that SUP-Rel and SUP-Gain use
approximately 12K annotated pairs. The average of the test set NDCG per fold, and the macro-average
over folds is reported in these tables.

Table 3: Decision tree regression.
Fold Logger SUP-Rel SUP-Gain PI-OPT
1 0.273 0.455 0.461 0.473
2 0.285 0.426 0.427 0.421
3 0.289 0.415 0.420 0.426
4 0.273 0.470 0.469 0.469
5 0.259 0.480 0.489 0.492
Avg 0.276 0.449 0.453 0.456

We find that PI-OPT is able to compete and even outperform the best among SUP-Rel and SUP-Gain.
We find that the number of samples needed to achieve parity is quite modest. Moreover, the variability
across runs is negligible at n = 105 (standard error across 10 runs for each fold < 0.002).

Table 4: Lasso regression.
Fold Logger SUP-Rel SUP-Gain PI-OPT
1 0.273 0.466 0.459 0.467
2 0.285 0.427 0.427 0.413
3 0.289 0.425 0.423 0.413
4 0.273 0.468 0.462 0.484
5 0.259 0.492 0.486 0.517
Avg 0.276 0.456 0.451 0.459

Table 5: Ridge regression.
Fold Logger SUP-Rel SUP-Gain PI-OPT
1 0.273 0.456 0.455 0.451
2 0.285 0.418 0.416 0.418
3 0.289 0.418 0.417 0.413
4 0.273 0.460 0.457 0.454
5 0.259 0.487 0.486 0.476
Avg 0.276 0.448 0.446 0.442

Finally, in Fig. 7, we also depict the performance of PI-OPT as a function of increasing amount of
logged samples for a particular run.

23


	1 Introduction
	2 Setting and notation
	2.1 Off-policy evaluation and optimization

	3 Our approach
	3.1 The pseudoinverse estimator
	3.2 Deviation analysis

	4 Experiments
	4.1 Semi-synthetic evaluation
	4.2 Semi-synthetic policy optimization
	4.3 Real-world experiments

	5 Discussion
	A Proofs of Theorems 1 and 2
	B Proof of Theorem 3
	C Pseudo-inverse estimator when pi=mu
	D Proof of Proposition 1
	D.1 Bounds for uniform distributions
	D.2 Translation theorem and proofs for pairwise kappa-uniform distributions
	D.3 Supporting claims

	E The p-values for plots in Figures 1 and 2
	F Additional results for off-policy evaluation on semi-synthetic data
	G Comparison of pointwise learning-to-rank approaches for off-policy optimization

